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About the Tutorial 

PyTorch is an open source machine learning library for Python and is completely based on 

Torch. It is primarily used for applications such as natural language processing. PyTorch 

is developed by Facebook's artificial-intelligence research group along with Uber's "Pyro" 

software for the concept of in-built probabilistic programming. 

   

Audience 

This tutorial has been prepared for python developers who focus on research and 

development with machine learning algorithms along with natural language processing 

system. The aim of this tutorial is to completely describe all concepts of PyTorch and real-

world examples of the same. 

 

Prerequisites 

Before proceeding with this tutorial, you need knowledge of Python and Anaconda 

framework (commands used in Anaconda). Having knowledge of artificial intelligence 

concepts will be an added advantage. 

 

Copyright & Disclaimer 

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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PyTorch is defined as an open source machine learning library for Python. It is used for 

applications such as natural language processing. It is initially developed by Facebook 

artificial-intelligence research group, and Uber’s Pyro software for probabilistic 

programming which is built on it. 

Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT 

based on Torch framework. There are two PyTorch variants. 

PyTorch redesigns and implements Torch in Python while sharing the same core C libraries 

for the backend code. PyTorch developers tuned this back-end code to run Python 

efficiently. They also kept the GPU based hardware acceleration as well as the extensibility 

features that made Lua-based Torch. 

Features 

The major features of PyTorch are mentioned below: 

Easy Interface: PyTorch offers easy to use API; hence it is considered to be very simple 

to operate and runs on Python. The code execution in this framework is quite easy. 

Python usage: This library is considered to be Pythonic which smoothly integrates with 

the Python data science stack. Thus, it can leverage all the services and functionalities 

offered by the Python environment. 

Computational graphs: PyTorch provides an excellent platform which offers dynamic 

computational graphs. Thus a user can change them during runtime. This is highly useful 

when a developer has no idea of how much memory is required for creating a neural 

network model. 

PyTorch is known for having three levels of abstraction as given below: 

 Tensor – Imperative n-dimensional array which runs on GPU. 

 Variable – Node in computational graph. This stores data and gradient. 

 Module – Neural network layer which will store state or learnable weights. 

Advantages of PyTorch 

The following are the advantages of PyTorch: 

 It is easy to debug and understand the code. 

 It includes many layers as Torch. 

 It includes lot of loss functions. 

 It can be considered as NumPy extension to GPUs. 

 It allows building networks whose structure is dependent on computation itself. 

1. PyTorch – Introduction 
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 TensorFlow vs. PyTorch  

We shall look into the major differences between TensorFlow and PyTorch below: 
 

PyTorch TensorFlow 

PyTorch is closely related to the lua-based 
Torch framework which is actively used in 
Facebook.  

TensorFlow is developed by Google Brain 
and actively used at Google.  

PyTorch is relatively new compared to 
other competitive technologies. 

TensorFlow is not new and is considered as 
a to-go tool by many researchers and 
industry professionals. 

PyTorch includes everything in imperative 
and dynamic manner. 

TensorFlow includes static and dynamic 
graphs as a combination. 

Computation graph in PyTorch is defined 
during runtime.  

TensorFlow do not include any run time 
option. 

PyTorch includes deployment featured for 
mobile and embedded frameworks. 

TensorFlow works better for embedded 
frameworks. 
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PyTorch is a popular deep learning framework. In this tutorial, we consider “Windows 10” 

as our operating system. The steps for a successful environmental setup are as follows:  

Step 1 

The following link includes a list of packages which includes suitable packages for PyTorch.  

https://drive.google.com/drive/folders/0B-X0-FlSGfCYdTNldW02UGl4MXM 

All you need to do is download the respective packages and install it as shown in the 

following screenshots: 

 
 

 
  

2. PyTorch – Installation  

https://drive.google.com/drive/folders/0B-X0-FlSGfCYdTNldW02UGl4MXM
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Step 2 

It involves verifying the installation of PyTorch framework using Anaconda Framework. 

Following command is used to verify the same: 

conda list 

 

 
 
“Conda list” shows the list of frameworks which is installed. 

 
 
The highlighted part shows that PyTorch has been successfully installed in our system. 
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Mathematics is vital in any machine learning algorithm and includes various core concepts 

of mathematics to get the right algorithm designed in a specific way. 

The importance of mathematics topics for machine learning and data science is mentioned 

below: 

 
Now, let us focus on the major mathematical concepts of machine learning which is 

important from Natural Language Processing point of view: 

Vectors 

Vector is considered to be array of numbers which is either continuous or discrete and the 

space which consists of vectors is called as vector space. The space dimensions of vectors 

can be either finite or infinite but it has been observed that machine learning and data 

science problems deal with fixed length vectors. 

The vector representation is displayed as mentioned below: 

temp = torch.FloatTensor([23,24,24.5,26,27.2,23.0]) 

temp.size() 

Output - torch.Size([6]) 

In machine learning, we deal with multidimensional data. So vectors become very crucial 

and are considered as input features for any prediction problem statement. 

  

3. Pytorch — Mathematical Building Blocks of Neural 
Networks 
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Scalars 

Scalars are termed to have zero dimensions containing only one value. When it comes to 

PyTorch, it does not include a special tensor with zero dimensions; hence the declaration 

will be made as follows: 

x = torch.rand(10) 

x.size() 

Output - torch.Size([10]) 

Matrices 

Most of the structured data is usually represented in the form of tables or a specific matrix. 

We will use a dataset called Boston House Prices, which is readily available in the Python 

scikit-learn machine learning library. 

boston_tensor = torch.from_numpy(boston.data) 

boston_tensor.size() 

Output: torch.Size([506, 13]) 

boston_tensor[:2] 

Output: 

Columns 0 to 7 

0.0063 18.0000 2.3100 0.0000 0.5380 6.5750 65.2000 4.0900 

0.0273 0.0000 7.0700 0.0000 0.4690 6.4210 78.9000 4.9671 

Columns 8 to 12 

1.0000 296.0000 15.3000 396.9000 4.9800 

2.0000 242.0000 17.8000 396.9000 9.1400 
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The main principle of neural network includes a collection of basic elements, i.e., artificial 

neuron or perceptron. It includes several basic inputs such as x1, x2….. xn which produces 

a binary output if the sum is greater than the activation potential.  

The schematic representation of sample neuron is mentioned below: 

 

 
 
The output generated can be considered as the weighted sum with activation potential or 

bias. 

 
 
The typical neural network architecture is described below: 

 

 
 
The layers between input and output are referred to as hidden layers, and the density and 

type of connections between layers is the configuration. For example, a fully connected 

configuration has all the neurons of layer L connected to those of L+1. For a more 

pronounced localization, we can connect only a local neighbourhood, say nine neurons, to 

the next layer. Figure 1-9 illustrates two hidden layers with dense connections. 

4. PyTorch – Neural Network Basics 
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The various types of neural networks are as follows: 

Feedforward Neural Networks 

Feedforward neural networks include basic units of neural network family. The movement 

of data in this type of neural network is from the input layer to output layer, via present 

hidden layers. The output of one layer serves as the input layer with restrictions on any 

kind of loops in the network architecture. 

 

 

Recurrent Neural Networks 

Recurrent Neural Networks are when the data pattern changes consequently over a period. 
In RNN, same layer is applied to accept the input parameters and display output parameters 
in specified neural network. 
 

 
 
 

 
 
 
 
 



PyTorch        

   9 

 

Neural networks can be constructed using the torch.nn package. 

 
 
It is a simple feed-forward network. It takes the input, feeds it through several layers one 

after the other, and then finally gives the output. 

With the help of PyTorch, we can use the following steps for typical training procedure for 

a neural network: 

 Define the neural network that has some learnable parameters (or weights). 

 Iterate over a dataset of inputs. 

 Process input through the network. 

 Compute the loss (how far is the output from being correct). 

 Propagate gradients back into the network’s parameters. 

 Update the weights of the network, typically using a simple update as given below: 

 rule: weight = weight -learning_rate * gradient 
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Artificial Intelligence is trending nowadays to a greater extent. Machine learning and deep 

learning constitutes artificial intelligence. The Venn diagram mentioned below explains the 

relationship of machine learning and deep learning.  

 

 

Machine Learning 

Machine learning is the art of science which allows computers to act as per the designed 

and programmed algorithms. Many researchers think machine learning is the best way to 

make progress towards human-level AI. It includes various types of patterns like: 

 Supervised Learning Pattern 

 Unsupervised Learning Pattern 

Deep Learning 

Deep learning is a subfield of machine learning where concerned algorithms are inspired 

by the structure and function of the brain called Artificial Neural Networks. 

Deep learning has gained much importance through supervised learning or learning from 

labelled data and algorithms. Each algorithm in deep learning goes through same process. 

It includes hierarchy of nonlinear transformation of input and uses to create a statistical 

model as output. 

Machine learning process is defined using following steps: 

 Identifies relevant data sets and prepares them for analysis. 

 Chooses the type of algorithm to use. 

 Builds an analytical model based on the algorithm used. 

5. PyTorch – Universal Workflow of Machine Learning 
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 Trains the model on test data sets, revising it as needed. 

 Runs the model to generate test scores. 
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In this chapter, we will discuss the major difference between Machine and Deep learning 

concepts.  

Amount of Data  

Machine learning works with different amounts of data and is mainly used for small 

amounts of data. Deep learning on the other hand works efficiently if the amount of data 

increases rapidly. The following diagram depicts the working of machine learning and deep 

learning with respect to amount of data: 

 

Hardware Dependencies 

Deep learning algorithms are designed to heavily depend on high end machines on a 

contrary to traditional machine learning algorithms. Deep learning algorithms perform a 

large amount of matrix multiplication operations which requires a huge hardware support. 

Feature Engineering 

Feature engineering is the process of putting domain knowledge into specified features to 

reduce the complexity of data and make patterns which are visible to learning algorithms.  

For instance, traditional machine learning patterns focusses on pixels and other attributes 

needed for feature engineering process. Deep learning algorithms focusses on high level 

features from data. It reduces the task of developing new feature extractor for every new 

problem. 

  

6. PyTorch – Machine Learning vs. Deep Learning 
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PyTorch includes a special feature of creating and implementing neural networks. In this 

chapter, we will create a simple neural network with one hidden layer developing a single 

output unit.  

We shall use following steps to implement the first neural network using PyTorch: 

Step 1 

First, we need to import the PyTorch library using the below command: 

import torch 

import torch.nn as nn 

Step 2 

Define all the layers and the batch size to start executing the neural network as shown 

below: 

# Defining input size, hidden layer size, output size and batch size respectively 

n_in, n_h, n_out, batch_size = 10, 5, 1, 10 

Step 3 

As neural network includes a combination of input data to get the respective output data, 

we will be following the same procedure as given below: 

# Create dummy input and target tensors (data) 

x = torch.randn(batch_size, n_in) 

y = torch.tensor([[1.0], [0.0], [0.0], [1.0], [1.0], [1.0], [0.0], [0.0], [1.0], [1.0]]) 

Step 4 

Create a sequential model with the help of in-built functions. Using the below lines of code, 

create a sequential model: 

# Create a model 

model = nn.Sequential(nn.Linear(n_in, n_h), 

                     nn.ReLU(), 

                     nn.Linear(n_h, n_out), 

                     nn.Sigmoid()) 

7. PyTorch – Implementing First Neural Network 
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Step 5 

Construct the loss function with the help of Gradient Descent optimizer as shown below:  

Construct the loss function 

criterion = torch.nn.MSELoss() 

# Construct the optimizer (Stochastic Gradient Descent in this case) 

optimizer = torch.optim.SGD(model.parameters(), lr=0.01) 

Step 6 

Implement the gradient descent model with the iterating loop with the given lines of code: 

# Gradient Descent 

for epoch in range(50): 

    # Forward pass: Compute predicted y by passing x to the model 

    y_pred = model(x) 

 

    # Compute and print loss 

    loss = criterion(y_pred, y) 

    print('epoch: ', epoch,' loss: ', loss.item()) 

 

    # Zero gradients, perform a backward pass, and update the weights. 

    optimizer.zero_grad() 

     

    # perform a backward pass (backpropagation) 

    loss.backward() 

     

    # Update the parameters 

    optimizer.step() 

Step 7 

The output generated is as follows: 

epoch:  0  loss:  0.2545787990093231 

epoch:  1  loss:  0.2545052170753479 

epoch:  2  loss:  0.254431813955307 

epoch:  3  loss:  0.25435858964920044 

epoch:  4  loss:  0.2542854845523834 
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epoch:  5  loss:  0.25421255826950073 

epoch:  6  loss:  0.25413978099823 

epoch:  7  loss:  0.25406715273857117 

epoch:  8  loss:  0.2539947032928467 

epoch:  9  loss:  0.25392240285873413 

epoch:  10  loss:  0.25385022163391113 

epoch:  11  loss:  0.25377824902534485 

epoch:  12  loss:  0.2537063956260681 

epoch:  13  loss:  0.2536346912384033 

epoch:  14  loss:  0.25356316566467285 

epoch:  15  loss:  0.25349172949790955 

epoch:  16  loss:  0.25342053174972534 

epoch:  17  loss:  0.2533493936061859 

epoch:  18  loss:  0.2532784342765808 

epoch:  19  loss:  0.25320762395858765 

epoch:  20  loss:  0.2531369626522064 

epoch:  21  loss:  0.25306645035743713 

epoch:  22  loss:  0.252996027469635 

epoch:  23  loss:  0.2529257833957672 

epoch:  24  loss:  0.25285571813583374 

epoch:  25  loss:  0.25278574228286743 

epoch:  26  loss:  0.25271597504615784 

epoch:  27  loss:  0.25264623761177063 

epoch:  28  loss:  0.25257670879364014 

epoch:  29  loss:  0.2525072991847992 

epoch:  30  loss:  0.2524380087852478 

epoch:  31  loss:  0.2523689270019531 

epoch:  32  loss:  0.25229987502098083 

epoch:  33  loss:  0.25223103165626526 

epoch:  34  loss:  0.25216227769851685 

epoch:  35  loss:  0.252093642950058 

epoch:  36  loss:  0.25202515721321106 

epoch:  37  loss:  0.2519568204879761 

epoch:  38  loss:  0.251888632774353 

epoch:  39  loss:  0.25182053446769714 

epoch:  40  loss:  0.2517525553703308 

epoch:  41  loss:  0.2516847252845764 
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epoch:  42  loss:  0.2516169846057892 

epoch:  43  loss:  0.2515493929386139 

epoch:  44  loss:  0.25148195028305054 

epoch:  45  loss:  0.25141456723213196 

epoch:  46  loss:  0.2513473629951477 

epoch:  47  loss:  0.2512802183628082 

epoch:  48  loss:  0.2512132525444031 

epoch:  49  loss:  0.2511464059352875 
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Training a deep learning algorithm involves the following steps: 

 Building a data pipeline 

 Building a network architecture 

 Evaluating the architecture using a loss function 

 Optimizing the network architecture weights using an optimization algorithm 

Training a specific deep learning algorithm is the exact requirement of converting a neural 

network to functional blocks as shown below: 

 
 
With respect to the above diagram, any deep learning algorithm involves getting the input 

data, building the respective architecture which includes a bunch of layers embedded in 

them. 

If you observe the above diagram, the accuracy is evaluated using a loss function with 

respect to optimization of the weights of neural network.  

 

8. PyTorch — Neural Networks to Functional Blocks 
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In this chapter, we will discuss some of the most commonly used terms in PyTorch. 

PyTorch NumPy 

A PyTorch tensor is identical to a NumPy array. A tensor is an n-dimensional array and 

with respect to PyTorch, it provides many functions to operate on these tensors. 

PyTorch tensors usually utilize GPUs to accelerate their numeric computations. These 

tensors which are created in PyTorch can be used to fit a two-layer network to random 

data. The user can manually implement the forward and backward passes through the 

network. 

Variables and Autograd 

When using autograd, the forward pass of your network will define a computational 

graph; nodes in the graph will be Tensors, and edges will be functions that produce output 

Tensors from input Tensors. 

PyTorch Tensors can be created as variable objects where a variable represents a node in 

computational graph. 

Dynamic Graphs 

Static graphs are nice because user can optimize the graph up front. If programmers are 

re-using same graph over and over, then this potentially costly up-front optimization can 

be maintained as the same graph is rerun over and over. 

The major difference between them is that Tensor Flow’s computational graphs are static 

and PyTorch uses dynamic computational graphs. 

Optim Package 

The optim package in PyTorch abstracts the idea of an optimization algorithm which is 

implemented in many ways and provides illustrations of commonly used optimization 

algorithms. This can be called within the import statement. 

Multiprocessing 

Multiprocessing supports the same operations, so that all tensors work on multiple 

processors. The queue will have their data moved into shared memory and will only send 

a handle to another process. 

 
 

 
 
 

 

9. PyTorch – Terminologies  
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PyTorch includes a package called torchvision which is used to load and prepare the 

dataset. It includes two basic functions namely Dataset and DataLoader which helps in 

transformation and loading of dataset. 

Dataset 

Dataset is used to read and transform a datapoint from the given dataset. The basic syntax 

to implement is mentioned below: 

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 

                                        download=True, transform=transform) 

DataLoader is used to shuffle and batch data. It can be used to load the data in parallel 

with multiprocessing workers. 

trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, 

                                          shuffle=True, num_workers=2) 

Example: Loading CSV File 

We use the Python package Panda to load the csv file. The original file has the following 

format: (image name, 68 landmarks - each landmark has a x, y coordinates). 

landmarks_frame = pd.read_csv('faces/face_landmarks.csv') 

 

n = 65 

img_name = landmarks_frame.iloc[n, 0] 

landmarks = landmarks_frame.iloc[n, 1:].as_matrix() 

landmarks = landmarks.astype('float').reshape(-1, 2) 

 
 

  

10. PyTorch – Loading Data 



PyTorch        

   20 

 

In this chapter, we will be focusing on basic example of linear regression implementation 

using TensorFlow. Logistic regression or linear regression is a supervised machine learning 

approach for the classification of order discrete categories. Our goal in this chapter is to 

build a model by which a user can predict the relationship between predictor variables and 

one or more independent variables. 

The relationship between these two variables is considered linear i.e., if y is the dependent 

variable and x is considered as the independent variable, then the linear regression 

relationship of two variables will look like the equation which is mentioned as below: 

Y= Ax+b 

Next, we shall design an algorithm for linear regression which allows us to understand two 

important concepts given below: 

 Cost Function 

 Gradient Descent Algorithms 

The schematic representation of linear regression is mentioned below: 

 
 

The graphical view of the equation of linear regression is mentioned below: 

 
 

 

11. PyTorch – Linear Regression 



PyTorch        

   21 

 

Following steps are used for implementing linear regression using PyTorch: 

Step 1 

Import the necessary packages for creating a linear regression in PyTorch using the below 

code: 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib.animation import FuncAnimation 

import seaborn as sns 

import pandas as pd 

%matplotlib inline 

 

sns.set_style(style='whitegrid') 

plt.rcParams["patch.force_edgecolor"] = True 

Step 2 

Create a single training set with the available data set as shown below: 

m = 2 # slope 

c = 3 # interceptm = 2 # slope 

c = 3 # intercept 

x = np.random.rand(256) 

 

noise = np.random.randn(256) / 4 

 

y = x * m + c + noise 

 

df = pd.DataFrame() 

df['x'] = x 

df['y'] = y 

 

sns.lmplot(x='x', y='y', data=df) 
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Step 3 

Implement linear regression with PyTorch libraries as mentioned below: 

import torch 

import torch.nn as nn 

from torch.autograd import Variable 

x_train = x.reshape(-1, 1).astype('float32') 

y_train = y.reshape(-1, 1).astype('float32') 

 

class LinearRegressionModel(nn.Module): 

    def __init__(self, input_dim, output_dim): 

        super(LinearRegressionModel, self).__init__() 

        self.linear = nn.Linear(input_dim, output_dim) 

     

    def forward(self, x): 

        out = self.linear(x) 

        return out 

input_dim = x_train.shape[1] 

output_dim = y_train.shape[1] 

input_dim, output_dim(1, 1) 

model = LinearRegressionModel(input_dim, output_dim) 

criterion = nn.MSELoss() 

[w, b] = model.parameters() 
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def get_param_values(): 

    return w.data[0][0], b.data[0] 

 

def plot_current_fit(title=""): 

    plt.figure(figsize=(12,4)) 

    plt.title(title) 

    plt.scatter(x, y, s=8) 

    w1 = w.data[0][0] 

    b1 = b.data[0] 

    x1 = np.array([0., 1.]) 

    y1 = x1 * w1 + b1 

    plt.plot(x1, y1, 'r', label='Current Fit ({:.3f}, {:.3f})'.format(w1, b1)) 

    plt.xlabel('x (input)') 

    plt.ylabel('y (target)') 

    plt.legend() 

    plt.show() 

plot_current_fit('Before training') 

 
The plot generated is as follows: 
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Deep learning is a division of machine learning and is considered as a crucial step taken 

by researchers in recent decades. The examples of deep learning implementation include 

applications like image recognition and speech recognition. 

The two important types of deep neural networks are given below: 

 Convolutional Neural Networks 

 Recurrent Neural Networks. 

In this chapter, we will be focusing on the first type, i.e., Convolutional Neural Networks 

(CNN). 

Convolutional Neural Networks 

Convolutional Neural networks are designed to process data through multiple layers of 

arrays. This type of neural networks are used in applications like image recognition or face 

recognition.  

The primary difference between CNN and any other ordinary neural network is that CNN 

takes input as a two dimensional array and operates directly on the images rather than 

focusing on feature extraction which other neural networks focus on. 

The dominant approach of CNN includes solution for problems of recognition. Top 

companies like Google and Facebook have invested in research and development projects 

of recognition projects to get activities done with greater speed.  

Every convolutional neural network includes three basic ideas: 

 Local respective fields 

 Convolution 

 Pooling 

Let us understand each of these terminologies in detail. 

Local Respective Fields 

CNN utilize spatial correlations that exists within the input data. Each in the concurrent 

layers of neural networks connects of some input neurons. This specific region is called 

Local Receptive Field. It only focusses on hidden neurons. The hidden neuron will process 

the input data inside the mentioned field not realizing the changes outside the specific 

boundary. 

The diagram representation of generating local respective fields is mentioned below: 

12. PyTorch – Convolutional Neural Network  
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Convolution 

In the above figure, we observe that each connection learns a weight of hidden neuron 

with an associated connection with movement from one layer to another. Here, individual 

neurons perform a shift from time to time. This process is called “convolution”.  

The mapping of connections from the input layer to the hidden feature map is defined as 

“shared weights” and bias included is called “shared bias”.  

Pooling 

Convolutional neural networks use pooling layers which are positioned immediately after 

CNN declaration. It takes the input from the user as a feature map which comes out 

convolutional networks and prepares a condensed feature map. Pooling layers help in 

creating layers with neurons of previous layers. 
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Implementation of PyTorch 

Following steps are used to create a Convolutional Neural Network using PyTorch.  

Step 1 

Import the necessary packages for creating a simple neural network. 

from torch.autograd import Variable 

import torch.nn.functional as F 

Step 2 

Create a class with batch representation of convolutional neural network. Our batch shape 

for input x is with dimension of (3, 32, 32). 

class SimpleCNN(torch.nn.Module): 

     

    def __init__(self): 

        super(SimpleCNN, self).__init__() 

         

        #Input channels = 3, output channels = 18 

        self.conv1 = torch.nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1) 

        self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0) 

         

        #4608 input features, 64 output features (see sizing flow below) 

        self.fc1 = torch.nn.Linear(18 * 16 * 16, 64) 

         

        #64 input features, 10 output features for our 10 defined classes 

        self.fc2 = torch.nn.Linear(64, 10) 

Step 3 

Compute the activation of the first convolution size changes from (3, 32, 32) to (18, 32, 

32). 

Size of the dimension changes from (18, 32, 32) to (18, 16, 16). Reshape data dimension 

of the input layer of the neural net due to which size changes from (18, 16, 16) to (1, 

4608). 

Recall that -1 infers this dimension from the other given dimension. 

def forward(self, x): 

        x = F.relu(self.conv1(x)) 

         

        x = self.pool(x) 
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        x = x.view(-1, 18 * 16 *16) 

         

 

        x = F.relu(self.fc1(x)) 

        #Computes the second fully connected layer (activation applied later) 

        #Size changes from (1, 64) to (1, 10) 

        x = self.fc2(x) 

        return(x) 
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Recurrent neural networks is one type of deep learning-oriented algorithm which follows 

a sequential approach. In neural networks, we always assume that each input and output 

is independent of all other layers. These type of neural networks are called recurrent 

because they perform mathematical computations in a sequential manner completing one 

task after another. 

The diagram below specifies the complete approach and working of recurrent neural 

networks: 

 
 

In the above figure, c1, c2, c3 and x1 are considered as inputs which includes some hidden 

input values namely h1, h2 and h3 delivering the respective output of o1. We will now 

focus on implementing PyTorch to create a sine wave with the help of recurrent neural 

networks. 

During training, we will follow a training approach to our model with one data point at a 

time. The input sequence x consists of 20 data points, and the target sequence is 

considered to be same as the input sequence. 

 

 

13. PyTorch — Recurrent Neural Network 
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Step 1 

Import the necessary packages for implementing recurrent neural networks using the 

below code: 

import torch 

from torch.autograd import Variable 

import numpy as np 

import pylab as pl 

import torch.nn.init as init 

Step 2 

We will set the model hyper parameters with the size of input layer set to 7. There will be 

6 context neurons and 1 input neuron for creating target sequence. 

dtype = torch.FloatTensor 

input_size, hidden_size, output_size = 7, 6, 1 

epochs = 300 

seq_length = 20 

lr = 0.1 

data_time_steps = np.linspace(2, 10, seq_length + 1) 

data = np.sin(data_time_steps) 

data.resize((seq_length + 1, 1)) 

  

x = Variable(torch.Tensor(data[:-1]).type(dtype), requires_grad=False) 

y = Variable(torch.Tensor(data[1:]).type(dtype), requires_grad=False) 

We will generate training data, where x is the input data sequence and y is required target 

sequence. 

Step 3 

Weights are initialized in the recurrent neural network using normal distribution with zero 

mean. W1 will represent acceptance of input variables and w2 will represent the output 

which is generated as shown below: 

w1 = torch.FloatTensor(input_size, hidden_size).type(dtype) 

init.normal(w1, 0.0, 0.4) 

w1 =  Variable(w1, requires_grad=True) 

w2 = torch.FloatTensor(hidden_size, output_size).type(dtype) 

init.normal(w2, 0.0, 0.3) 

w2 = Variable(w2, requires_grad=True) 
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Step 4 

Now, it is important to create a function for feed forward which uniquely defines the neural 

network. 

def forward(input, context_state, w1, w2): 

  xh = torch.cat((input, context_state), 1) 

  context_state = torch.tanh(xh.mm(w1)) 

  out = context_state.mm(w2) 

  return  (out, context_state) 

Step 5 

The next step is to start training procedure of recurrent neural network’s sine wave 

implementation. The outer loop iterates over each loop and the inner loop iterates through 

the element of sequence. Here, we will also compute Mean Square Error (MSE) which helps 

in the prediction of continuous variables. 

for i in range(epochs): 

  total_loss = 0 

  context_state = Variable(torch.zeros((1, hidden_size)).type(dtype), 

requires_grad=True) 

  for j in range(x.size(0)): 

    input = x[j:(j+1)] 

    target = y[j:(j+1)] 

    (pred, context_state) = forward(input, context_state, w1, w2) 

    loss = (pred - target).pow(2).sum()/2 

    total_loss += loss 

    loss.backward() 

    w1.data -= lr * w1.grad.data 

    w2.data -= lr * w2.grad.data 

    w1.grad.data.zero_() 

    w2.grad.data.zero_() 

    context_state = Variable(context_state.data) 

  if i % 10 == 0: 

     print("Epoch: {} loss {}".format(i, total_loss.data[0])) 

 

context_state = Variable(torch.zeros((1, hidden_size)).type(dtype), 

requires_grad=False) 

predictions = [] 

  

for i in range(x.size(0)): 
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  input = x[i:i+1] 

  (pred, context_state) = forward(input, context_state, w1, w2) 

  context_state = context_state 

  predictions.append(pred.data.numpy().ravel()[0]) 

Step 6 

Now, it is time to plot the sine wave as the way it is needed. 

pl.scatter(data_time_steps[:-1], x.data.numpy(), s=90, label="Actual") 

pl.scatter(data_time_steps[1:], predictions, label="Predicted") 

pl.legend() 

pl.show() 

Output 

The output for the above process is as follows: 
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In this chapter, we will focus more on torchvision.datasets and its various types. 

PyTorch includes following dataset loaders: 

 MNIST 

 COCO (Captioning and Detection) 

Dataset includes majority of two types of functions given below: 

 Transform – a function that takes in an image and returns a modified version of 

standard stuff. These can be composed together with transforms. 

 Target_transform – a function that takes the target and transforms it. For 

example, takes in the caption string and returns a tensor of world indices. 

MNIST 

The following is the sample code for MNIST dataset: 

dset.MNIST(root, train = TRUE, transform = NONE, target_transform= None, 

download = FALSE) 

The parameters are as follows: 

 root - root directory of the dataset where processed data exist. 

 train - True = Training set, False = Test set 

 download - True = downloads the dataset from the internet and puts it in the 

root.  

COCO 

This requires the COCO API to be installed. The following example is used to demonstrate 

the COCO implementation of dataset using PyTorch: 

import torchvision.dataset as dset 

import torchvision.transforms as transforms 

cap = dset.CocoCaptions(root = ‘ dir where images are’, annFile =’json 

annotation file’,  

           transform=transforms.ToTensor()) 

print(‘Number of samples: ‘, len(cap)) 

print(target) 

 

14. PyTorch – Datasets 
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The output achieved is as follows: 

Number of samples: 82783 

Image Size: (3L, 427L, 640L) 
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Convents is all about building the CNN model from scratch. The network architecture will 

contain a combination of following steps: 

 Conv2d 

 MaxPool2d 

 Rectified Linear Unit 

 View 

 Linear Layer 

Training the Model 

Training the model is the same process like image classification problems. The following 

code snippet completes the procedure of a training model on the provided dataset: 

def fit(epoch,model,data_loader,phase='training',volatile=False): 

    if phase == 'training': 

        model.train() 

    if phase == 'training': 

        model.train() 

    if phase == 'validation': 

        model.eval() 

    volatile=True 

    running_loss = 0.0 

    running_correct = 0 

    for batch_idx , (data,target) in enumerate(data_loader): 

        if is_cuda: 

            data,target = data.cuda(),target.cuda() 

            data , target = Variable(data,volatile),Variable(target) 

        if phase == 'training': 

            optimizer.zero_grad() 

            output = model(data) 

            loss = F.nll_loss(output,target) 

            running_loss += 

F.nll_loss(output,target,size_average=False).data[0] 

            preds = output.data.max(dim=1,keepdim=True)[1] 

            running_correct += preds.eq(target.data.view_as(preds)).cpu().sum() 

15. PyTorch – Introduction to Convents 
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            if phase == 'training': 

                loss.backward() 

                optimizer.step() 

    loss = running_loss/len(data_loader.dataset) 

    accuracy = 100. * running_correct/len(data_loader.dataset) 

    print(f'{phase} loss is {loss:{5}.{2}} and {phase} accuracy is 

{running_correct}/{len(data_loader.dataset)}{accuracy:{return loss,accuracy}}) 

 

The method includes different logic for training and validation. There are two primary 

reasons for using different modes: 

 In train mode, dropout removes a percentage of values, which should not happen 

in the validation or testing phase. 

 For training mode, we calculate gradients and change the model's parameters 

value, but back propagation is not required during the testing or validation phases. 
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In this chapter, we will focus on creating a convent from scratch. This infers in creating 

the respective convent or sample neural network with torch. 

Step 1 

Create a necessary class with respective parameters. The parameters include weights with 

random value. 

class Neural_Network(nn.Module): 

    def __init__(self, ): 

        super(Neural_Network, self).__init__() 

        self.inputSize = 2 

        self.outputSize = 1 

        self.hiddenSize = 3 

         

        # weights 

        self.W1 = torch.randn(self.inputSize, self.hiddenSize) # 3 X 2 tensor 

        self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor 

Step 2 

Create a feed forward pattern of function with sigmoid functions. 

def forward(self, X): 

        self.z = torch.matmul(X, self.W1) # 3 X 3 ".dot" does not broadcast in 

PyTorch 

        self.z2 = self.sigmoid(self.z) # activation function 

        self.z3 = torch.matmul(self.z2, self.W2) 

        o = self.sigmoid(self.z3) # final activation function 

        return o 

         

 def sigmoid(self, s): 

        return 1 / (1 + torch.exp(-s)) 

     

 def sigmoidPrime(self, s): 

        # derivative of sigmoid 

        return s * (1 - s) 

16. PyTorch – Training a Convent from Scratch 
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 def backward(self, X, y, o): 

        self.o_error = y - o # error in output 

        self.o_delta = self.o_error * self.sigmoidPrime(o) # derivative of sig 

to error 

        self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2)) 

        self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2) 

        self.W1 += torch.matmul(torch.t(X), self.z2_delta) 

        self.W2 += torch.matmul(torch.t(self.z2), self.o_delta) 

Step 3 

Create a training and prediction model as mentioned below: 

def train(self, X, y): 

        # forward + backward pass for training 

        o = self.forward(X) 

        self.backward(X, y, o) 

         

def saveWeights(self, model): 

        # Implement PyTorch internal storage functions 

        torch.save(model, "NN") 

        # you can reload model with all the weights and so forth with: 

        # torch.load("NN") 

         

def predict(self): 

        print ("Predicted data based on trained weights: ") 

        print ("Input (scaled): \n" + str(xPredicted)) 

        print ("Output: \n" + str(self.forward(xPredicted))) 
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Convolutional neural networks include a primary feature, extraction. Following steps are 

used to implement the feature extraction of convolutional neural network. 

Step 1 

Import the respective models to create the feature extraction model with “PyTorch”. 

import torch 

import torch.nn as nn 

from torchvision import models 

Step 2 

Create a class of feature extractor which can be called as and when needed. 

class Feature_extractor(nn.module): 

    def forward(self, input): 

        self.feature = input.clone() 

        return input 

 

new_net = nn.Sequential().cuda() # the new network 

 

target_layers = [conv_1, conv_2, conv_4] # layers you want to extract` 

 

i = 1 

for layer in list(cnn): 

    if isinstance(layer,nn.Conv2d): 

        name = "conv_"+str(i) 

        art_net.add_module(name,layer) 

 

        if name in target_layers: 

            new_net.add_module("extractor_"+str(i),Feature_extractor()) 

 

        i+=1 

 

    if isinstance(layer,nn.ReLU): 

        name = "relu_"+str(i) 

17. PyTorch – Feature Extraction in Convents 
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        new_net.add_module(name,layer) 

 

    if isinstance(layer,nn.MaxPool2d): 

        name = "pool_"+str(i) 

        new_net.add_module(name,layer) 

new_net.forward(your_image) 

print (new_net.extractor_3.feature) 
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In this chapter, we will be focusing on the data visualization model with the help of 

convents. Following steps are required to get a perfect picture of visualization with 

conventional neural network. 

Step 1 

Import the necessary modules which is important for the visualization of conventional 

neural networks. 

import os 

import numpy as np 

import pandas as pd 

from scipy.misc import imread 

from sklearn.metrics import accuracy_score 

 

import keras 

from keras.models import Sequential, Model 

from keras.layers import Dense, Dropout, Flatten, Activation, Input 

from keras.layers import Conv2D, MaxPooling2D 

import torch 

Step 2 

To stop potential randomness with training and testing data, call the respective data set 

as given in the code below: 

seed = 128 

rng = np.random.RandomState(seed) 

 

data_dir = "../../datasets/MNIST" 

 

train = pd.read_csv('../../datasets/MNIST/train.csv') 

test = pd.read_csv('../../datasets/MNIST/Test_fCbTej3.csv') 

 

img_name = rng.choice(train.filename) 

filepath = os.path.join(data_dir, 'train', img_name) 

 

18. PyTorch – Visualization of Convents 
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img = imread(filepath, flatten=True) 

Step 3 

Plot the necessary images to get the training and testing data defined in perfect way using 
the below code: 

pylab.imshow(img, cmap='gray') 

pylab.axis('off') 

pylab.show() 

The output is displayed as below: 
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In this chapter, we propose an alternative approach which instead relies on a single 2D 

convolutional neural network across both sequences. Each layer of our network re-codes 

source tokens on the basis of the output sequence produced so far. Attention-like 

properties are therefore pervasive throughout the network.  

Here, we will focus on creating the sequential network with specific pooling from 

the values included in dataset. This process is also best applied in “Image Recognition 

Module”. 

 
 
Following steps are used to create a sequence processing model with convents using 

PyTorch: 

Step 1 

Import the necessary modules for performance of sequence processing using convents. 

import keras 

from keras.datasets import mnist 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten 

from keras.layers import Conv2D, MaxPooling2D 

import numpy as np 

Step 2 

Perform the necessary operations to create a pattern in respective sequence using the 

below code: 

batch_size = 128 

num_classes = 10 

epochs = 12 

 

19. PyTorch – Sequence Processing with Convents 
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# input image dimensions 

img_rows, img_cols = 28, 28 

 

# the data, split between train and test sets 

(x_train, y_train), (x_test, y_test) = mnist.load_data() 

 

x_train = x_train.reshape(60000,28,28,1) 

x_test = x_test.reshape(10000,28,28,1) 

 

print('x_train shape:', x_train.shape) 

print(x_train.shape[0], 'train samples') 

print(x_test.shape[0], 'test samples') 

 

y_train = keras.utils.to_categorical(y_train, num_classes) 

y_test = keras.utils.to_categorical(y_test, num_classes) 

Step 3 

Compile the model and fit the pattern in the mentioned conventional neural network model 

as shown below: 

model.compile(loss=keras.losses.categorical_crossentropy, 

              optimizer=keras.optimizers.Adadelta(), 

              metrics=['accuracy']) 

 

model.fit(x_train, y_train, 

          batch_size=batch_size, 

          epochs=epochs, 

          verbose=1, 

          validation_data=(x_test, y_test)) 

score = model.evaluate(x_test, y_test, verbose=0) 

print('Test loss:', score[0]) 

print('Test accuracy:', score[1]) 

 

 

 

 

The output generated is as follows: 
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In this chapter, we will understand the famous word embedding model: word2vec. 

Word2vec model is used to produce word embedding with the help of group of related 

models. Word2vec model is implemented with pure C-code and the gradient are computed 

manually. 

The implementation of word2vec model in PyTorch is explained in the below steps: 

Step 1 

Implement the libraries in word embedding as mentioned below: 

import torch 

from torch.autograd import Variable 

import torch.nn as nn 

import torch.nn.functional as F 

Step 2 

Implement the Skip Gram Model of word embedding with the class called word2vec. It 

includes emb_size, emb_dimension, u_embedding, v_embedding type of attributes. 

class SkipGramModel(nn.Module): 

 

    def __init__(self, emb_size, emb_dimension): 

        super(SkipGramModel, self).__init__() 

        self.emb_size = emb_size 

        self.emb_dimension = emb_dimension 

        self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) 

        self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True) 

        self.init_emb() 

 

    def init_emb(self): 

        initrange = 0.5 / self.emb_dimension 

        self.u_embeddings.weight.data.uniform_(-initrange, initrange) 

        self.v_embeddings.weight.data.uniform_(-0, 0) 

 

    def forward(self, pos_u, pos_v, neg_v): 

        emb_u = self.u_embeddings(pos_u) 

20. PyTorch – Word Embedding 
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        emb_v = self.v_embeddings(pos_v) 

        score = torch.mul(emb_u, emb_v).squeeze() 

        score = torch.sum(score, dim=1) 

        score = F.logsigmoid(score) 

        neg_emb_v = self.v_embeddings(neg_v) 

        neg_score = torch.bmm(neg_emb_v, emb_u.unsqueeze(2)).squeeze() 

        neg_score = F.logsigmoid(-1 * neg_score) 

        return -1 * (torch.sum(score)+torch.sum(neg_score)) 

 

    def save_embedding(self, id2word, file_name, use_cuda): 

        if use_cuda: 

            embedding = self.u_embeddings.weight.cpu().data.numpy() 

        else: 

            embedding = self.u_embeddings.weight.data.numpy() 

        fout = open(file_name, 'w') 

        fout.write('%d %d\n' % (len(id2word), self.emb_dimension)) 

        for wid, w in id2word.items(): 

            e = embedding[wid] 

            e = ' '.join(map(lambda x: str(x), e)) 

            fout.write('%s %s\n' % (w, e)) 

 

 

def test(): 

    model = SkipGramModel(100, 100) 

    id2word = dict() 

    for i in range(100): 

        id2word[i] = str(i) 

    model.save_embedding(id2word) 

Step 3 

Implement the main method to get the word embedding model displayed in proper way. 

if __name__ == '__main__': 

    test() 
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Deep neural networks have an exclusive feature for enabling breakthroughs in machine 

learning understanding the process of natural language. It is observed that most of these 

models treat language as a flat sequence of words or characters, and use a kind of model 

which is referred as recurrent neural network or RNN.  

Many researchers come to a conclusion that language is best understood with respect to 

hierarchical tree of phrases. This type is included in recursive neural networks that take a 

specific structure into account.  

PyTorch has a specific feature which helps to make these complex natural language 

processing models a lot easier. It is a fully-featured framework for all kinds of deep 

learning with strong support for computer vision. 

Features of Recursive Neural Network 

 A recursive neural network is created in such a way that it includes applying same 

set of weights with different graph like structures. 

 The nodes are traversed in topological order. 

 This type of network is trained by the reverse mode of automatic differentiation. 

 Natural language processing includes a special case of recursive neural networks. 

 This recursive neural tensor network includes various composition functional nodes 

in the tree. 

The example of recursive neural network is demonstrated below: 

 

21. PyTorch – Recursive Neural Networks 


