
PyTorch

 i

PyTorch

 ii

About the Tutorial

PyTorch is an open source machine learning library for Python and is completely based on

Torch. It is primarily used for applications such as natural language processing. PyTorch

is developed by Facebook's artificial-intelligence research group along with Uber's "Pyro"

software for the concept of in-built probabilistic programming.

Audience

This tutorial has been prepared for python developers who focus on research and

development with machine learning algorithms along with natural language processing

system. The aim of this tutorial is to completely describe all concepts of PyTorch and real-

world examples of the same.

Prerequisites

Before proceeding with this tutorial, you need knowledge of Python and Anaconda

framework (commands used in Anaconda). Having knowledge of artificial intelligence

concepts will be an added advantage.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

PyTorch

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. PyTorch – Introduction ... 1

Features ... 1

Advantages of PyTorch .. 1

TensorFlow vs. PyTorch ... 2

2. PyTorch – Installation ... 3

3. Pytorch — Mathematical Building Blocks of Neural Networks .. 5

Vectors... 5

Scalars .. 6

Matrices ... 6

4. PyTorch – Neural Network Basics .. 7

Feedforward Neural Networks .. 8

Recurrent Neural Networks ... 8

5. PyTorch – Universal Workflow of Machine Learning ... 10

Machine Learning .. 10

Deep Learning .. 10

6. PyTorch – Machine Learning vs. Deep Learning .. 12

7. PyTorch – Implementing First Neural Network ... 13

8. PyTorch — Neural Networks to Functional Blocks .. 17

9. PyTorch – Terminologies ... 18

10. PyTorch – Loading Data ... 19

Dataset .. 19

PyTorch

 iv

11. PyTorch – Linear Regression ... 20

12. PyTorch – Convolutional Neural Network ... 24

Convolutional Neural Networks .. 24

Local Respective Fields .. 24

Convolution ... 25

Pooling ... 25

Implementation of PyTorch ... 26

13. PyTorch — Recurrent Neural Network .. 28

14. PyTorch – Datasets ... 32

MNIST .. 32

COCO ... 32

15. PyTorch – Introduction to Convents .. 34

Training the Model .. 34

16. PyTorch – Training a Convent from Scratch ... 36

17. PyTorch – Feature Extraction in Convents ... 38

18. PyTorch – Visualization of Convents ... 40

19. PyTorch – Sequence Processing with Convents ... 42

20. PyTorch – Word Embedding .. 45

21. PyTorch – Recursive Neural Networks .. 47

Features of Recursive Neural Network .. 47

PyTorch

 1

PyTorch is defined as an open source machine learning library for Python. It is used for

applications such as natural language processing. It is initially developed by Facebook

artificial-intelligence research group, and Uber’s Pyro software for probabilistic

programming which is built on it.

Originally, PyTorch was developed by Hugh Perkins as a Python wrapper for the LusJIT

based on Torch framework. There are two PyTorch variants.

PyTorch redesigns and implements Torch in Python while sharing the same core C libraries

for the backend code. PyTorch developers tuned this back-end code to run Python

efficiently. They also kept the GPU based hardware acceleration as well as the extensibility

features that made Lua-based Torch.

Features

The major features of PyTorch are mentioned below:

Easy Interface: PyTorch offers easy to use API; hence it is considered to be very simple

to operate and runs on Python. The code execution in this framework is quite easy.

Python usage: This library is considered to be Pythonic which smoothly integrates with

the Python data science stack. Thus, it can leverage all the services and functionalities

offered by the Python environment.

Computational graphs: PyTorch provides an excellent platform which offers dynamic

computational graphs. Thus a user can change them during runtime. This is highly useful

when a developer has no idea of how much memory is required for creating a neural

network model.

PyTorch is known for having three levels of abstraction as given below:

 Tensor – Imperative n-dimensional array which runs on GPU.

 Variable – Node in computational graph. This stores data and gradient.

 Module – Neural network layer which will store state or learnable weights.

Advantages of PyTorch

The following are the advantages of PyTorch:

 It is easy to debug and understand the code.

 It includes many layers as Torch.

 It includes lot of loss functions.

 It can be considered as NumPy extension to GPUs.

 It allows building networks whose structure is dependent on computation itself.

1. PyTorch – Introduction

PyTorch

 2

 TensorFlow vs. PyTorch

We shall look into the major differences between TensorFlow and PyTorch below:

PyTorch TensorFlow

PyTorch is closely related to the lua-based
Torch framework which is actively used in
Facebook.

TensorFlow is developed by Google Brain
and actively used at Google.

PyTorch is relatively new compared to
other competitive technologies.

TensorFlow is not new and is considered as
a to-go tool by many researchers and
industry professionals.

PyTorch includes everything in imperative
and dynamic manner.

TensorFlow includes static and dynamic
graphs as a combination.

Computation graph in PyTorch is defined
during runtime.

TensorFlow do not include any run time
option.

PyTorch includes deployment featured for
mobile and embedded frameworks.

TensorFlow works better for embedded
frameworks.

PyTorch

 3

PyTorch is a popular deep learning framework. In this tutorial, we consider “Windows 10”

as our operating system. The steps for a successful environmental setup are as follows:

Step 1

The following link includes a list of packages which includes suitable packages for PyTorch.

https://drive.google.com/drive/folders/0B-X0-FlSGfCYdTNldW02UGl4MXM

All you need to do is download the respective packages and install it as shown in the

following screenshots:

2. PyTorch – Installation

https://drive.google.com/drive/folders/0B-X0-FlSGfCYdTNldW02UGl4MXM

PyTorch

 4

Step 2

It involves verifying the installation of PyTorch framework using Anaconda Framework.

Following command is used to verify the same:

conda list

“Conda list” shows the list of frameworks which is installed.

The highlighted part shows that PyTorch has been successfully installed in our system.

PyTorch

 5

Mathematics is vital in any machine learning algorithm and includes various core concepts

of mathematics to get the right algorithm designed in a specific way.

The importance of mathematics topics for machine learning and data science is mentioned

below:

Now, let us focus on the major mathematical concepts of machine learning which is

important from Natural Language Processing point of view:

Vectors

Vector is considered to be array of numbers which is either continuous or discrete and the

space which consists of vectors is called as vector space. The space dimensions of vectors

can be either finite or infinite but it has been observed that machine learning and data

science problems deal with fixed length vectors.

The vector representation is displayed as mentioned below:

temp = torch.FloatTensor([23,24,24.5,26,27.2,23.0])

temp.size()

Output - torch.Size([6])

In machine learning, we deal with multidimensional data. So vectors become very crucial

and are considered as input features for any prediction problem statement.

3. Pytorch — Mathematical Building Blocks of Neural
Networks

PyTorch

 6

Scalars

Scalars are termed to have zero dimensions containing only one value. When it comes to

PyTorch, it does not include a special tensor with zero dimensions; hence the declaration

will be made as follows:

x = torch.rand(10)

x.size()

Output - torch.Size([10])

Matrices

Most of the structured data is usually represented in the form of tables or a specific matrix.

We will use a dataset called Boston House Prices, which is readily available in the Python

scikit-learn machine learning library.

boston_tensor = torch.from_numpy(boston.data)

boston_tensor.size()

Output: torch.Size([506, 13])

boston_tensor[:2]

Output:

Columns 0 to 7

0.0063 18.0000 2.3100 0.0000 0.5380 6.5750 65.2000 4.0900

0.0273 0.0000 7.0700 0.0000 0.4690 6.4210 78.9000 4.9671

Columns 8 to 12

1.0000 296.0000 15.3000 396.9000 4.9800

2.0000 242.0000 17.8000 396.9000 9.1400

PyTorch

 7

The main principle of neural network includes a collection of basic elements, i.e., artificial

neuron or perceptron. It includes several basic inputs such as x1, x2….. xn which produces

a binary output if the sum is greater than the activation potential.

The schematic representation of sample neuron is mentioned below:

The output generated can be considered as the weighted sum with activation potential or

bias.

The typical neural network architecture is described below:

The layers between input and output are referred to as hidden layers, and the density and

type of connections between layers is the configuration. For example, a fully connected

configuration has all the neurons of layer L connected to those of L+1. For a more

pronounced localization, we can connect only a local neighbourhood, say nine neurons, to

the next layer. Figure 1-9 illustrates two hidden layers with dense connections.

4. PyTorch – Neural Network Basics

PyTorch

 8

The various types of neural networks are as follows:

Feedforward Neural Networks

Feedforward neural networks include basic units of neural network family. The movement

of data in this type of neural network is from the input layer to output layer, via present

hidden layers. The output of one layer serves as the input layer with restrictions on any

kind of loops in the network architecture.

Recurrent Neural Networks

Recurrent Neural Networks are when the data pattern changes consequently over a period.
In RNN, same layer is applied to accept the input parameters and display output parameters
in specified neural network.

PyTorch

 9

Neural networks can be constructed using the torch.nn package.

It is a simple feed-forward network. It takes the input, feeds it through several layers one

after the other, and then finally gives the output.

With the help of PyTorch, we can use the following steps for typical training procedure for

a neural network:

 Define the neural network that has some learnable parameters (or weights).

 Iterate over a dataset of inputs.

 Process input through the network.

 Compute the loss (how far is the output from being correct).

 Propagate gradients back into the network’s parameters.

 Update the weights of the network, typically using a simple update as given below:

 rule: weight = weight -learning_rate * gradient

PyTorch

 10

Artificial Intelligence is trending nowadays to a greater extent. Machine learning and deep

learning constitutes artificial intelligence. The Venn diagram mentioned below explains the

relationship of machine learning and deep learning.

Machine Learning

Machine learning is the art of science which allows computers to act as per the designed

and programmed algorithms. Many researchers think machine learning is the best way to

make progress towards human-level AI. It includes various types of patterns like:

 Supervised Learning Pattern

 Unsupervised Learning Pattern

Deep Learning

Deep learning is a subfield of machine learning where concerned algorithms are inspired

by the structure and function of the brain called Artificial Neural Networks.

Deep learning has gained much importance through supervised learning or learning from

labelled data and algorithms. Each algorithm in deep learning goes through same process.

It includes hierarchy of nonlinear transformation of input and uses to create a statistical

model as output.

Machine learning process is defined using following steps:

 Identifies relevant data sets and prepares them for analysis.

 Chooses the type of algorithm to use.

 Builds an analytical model based on the algorithm used.

5. PyTorch – Universal Workflow of Machine Learning

PyTorch

 11

 Trains the model on test data sets, revising it as needed.

 Runs the model to generate test scores.

PyTorch

 12

In this chapter, we will discuss the major difference between Machine and Deep learning

concepts.

Amount of Data

Machine learning works with different amounts of data and is mainly used for small

amounts of data. Deep learning on the other hand works efficiently if the amount of data

increases rapidly. The following diagram depicts the working of machine learning and deep

learning with respect to amount of data:

Hardware Dependencies

Deep learning algorithms are designed to heavily depend on high end machines on a

contrary to traditional machine learning algorithms. Deep learning algorithms perform a

large amount of matrix multiplication operations which requires a huge hardware support.

Feature Engineering

Feature engineering is the process of putting domain knowledge into specified features to

reduce the complexity of data and make patterns which are visible to learning algorithms.

For instance, traditional machine learning patterns focusses on pixels and other attributes

needed for feature engineering process. Deep learning algorithms focusses on high level

features from data. It reduces the task of developing new feature extractor for every new

problem.

6. PyTorch – Machine Learning vs. Deep Learning

PyTorch

 13

PyTorch includes a special feature of creating and implementing neural networks. In this

chapter, we will create a simple neural network with one hidden layer developing a single

output unit.

We shall use following steps to implement the first neural network using PyTorch:

Step 1

First, we need to import the PyTorch library using the below command:

import torch

import torch.nn as nn

Step 2

Define all the layers and the batch size to start executing the neural network as shown

below:

Defining input size, hidden layer size, output size and batch size respectively

n_in, n_h, n_out, batch_size = 10, 5, 1, 10

Step 3

As neural network includes a combination of input data to get the respective output data,

we will be following the same procedure as given below:

Create dummy input and target tensors (data)

x = torch.randn(batch_size, n_in)

y = torch.tensor([[1.0], [0.0], [0.0], [1.0], [1.0], [1.0], [0.0], [0.0], [1.0], [1.0]])

Step 4

Create a sequential model with the help of in-built functions. Using the below lines of code,

create a sequential model:

Create a model

model = nn.Sequential(nn.Linear(n_in, n_h),

 nn.ReLU(),

 nn.Linear(n_h, n_out),

 nn.Sigmoid())

7. PyTorch – Implementing First Neural Network

PyTorch

 14

Step 5

Construct the loss function with the help of Gradient Descent optimizer as shown below:

Construct the loss function

criterion = torch.nn.MSELoss()

Construct the optimizer (Stochastic Gradient Descent in this case)

optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

Step 6

Implement the gradient descent model with the iterating loop with the given lines of code:

Gradient Descent

for epoch in range(50):

 # Forward pass: Compute predicted y by passing x to the model

 y_pred = model(x)

 # Compute and print loss

 loss = criterion(y_pred, y)

 print('epoch: ', epoch,' loss: ', loss.item())

 # Zero gradients, perform a backward pass, and update the weights.

 optimizer.zero_grad()

 # perform a backward pass (backpropagation)

 loss.backward()

 # Update the parameters

 optimizer.step()

Step 7

The output generated is as follows:

epoch: 0 loss: 0.2545787990093231

epoch: 1 loss: 0.2545052170753479

epoch: 2 loss: 0.254431813955307

epoch: 3 loss: 0.25435858964920044

epoch: 4 loss: 0.2542854845523834

PyTorch

 15

epoch: 5 loss: 0.25421255826950073

epoch: 6 loss: 0.25413978099823

epoch: 7 loss: 0.25406715273857117

epoch: 8 loss: 0.2539947032928467

epoch: 9 loss: 0.25392240285873413

epoch: 10 loss: 0.25385022163391113

epoch: 11 loss: 0.25377824902534485

epoch: 12 loss: 0.2537063956260681

epoch: 13 loss: 0.2536346912384033

epoch: 14 loss: 0.25356316566467285

epoch: 15 loss: 0.25349172949790955

epoch: 16 loss: 0.25342053174972534

epoch: 17 loss: 0.2533493936061859

epoch: 18 loss: 0.2532784342765808

epoch: 19 loss: 0.25320762395858765

epoch: 20 loss: 0.2531369626522064

epoch: 21 loss: 0.25306645035743713

epoch: 22 loss: 0.252996027469635

epoch: 23 loss: 0.2529257833957672

epoch: 24 loss: 0.25285571813583374

epoch: 25 loss: 0.25278574228286743

epoch: 26 loss: 0.25271597504615784

epoch: 27 loss: 0.25264623761177063

epoch: 28 loss: 0.25257670879364014

epoch: 29 loss: 0.2525072991847992

epoch: 30 loss: 0.2524380087852478

epoch: 31 loss: 0.2523689270019531

epoch: 32 loss: 0.25229987502098083

epoch: 33 loss: 0.25223103165626526

epoch: 34 loss: 0.25216227769851685

epoch: 35 loss: 0.252093642950058

epoch: 36 loss: 0.25202515721321106

epoch: 37 loss: 0.2519568204879761

epoch: 38 loss: 0.251888632774353

epoch: 39 loss: 0.25182053446769714

epoch: 40 loss: 0.2517525553703308

epoch: 41 loss: 0.2516847252845764

PyTorch

 16

epoch: 42 loss: 0.2516169846057892

epoch: 43 loss: 0.2515493929386139

epoch: 44 loss: 0.25148195028305054

epoch: 45 loss: 0.25141456723213196

epoch: 46 loss: 0.2513473629951477

epoch: 47 loss: 0.2512802183628082

epoch: 48 loss: 0.2512132525444031

epoch: 49 loss: 0.2511464059352875

PyTorch

 17

Training a deep learning algorithm involves the following steps:

 Building a data pipeline

 Building a network architecture

 Evaluating the architecture using a loss function

 Optimizing the network architecture weights using an optimization algorithm

Training a specific deep learning algorithm is the exact requirement of converting a neural

network to functional blocks as shown below:

With respect to the above diagram, any deep learning algorithm involves getting the input

data, building the respective architecture which includes a bunch of layers embedded in

them.

If you observe the above diagram, the accuracy is evaluated using a loss function with

respect to optimization of the weights of neural network.

8. PyTorch — Neural Networks to Functional Blocks

PyTorch

 18

In this chapter, we will discuss some of the most commonly used terms in PyTorch.

PyTorch NumPy

A PyTorch tensor is identical to a NumPy array. A tensor is an n-dimensional array and

with respect to PyTorch, it provides many functions to operate on these tensors.

PyTorch tensors usually utilize GPUs to accelerate their numeric computations. These

tensors which are created in PyTorch can be used to fit a two-layer network to random

data. The user can manually implement the forward and backward passes through the

network.

Variables and Autograd

When using autograd, the forward pass of your network will define a computational

graph; nodes in the graph will be Tensors, and edges will be functions that produce output

Tensors from input Tensors.

PyTorch Tensors can be created as variable objects where a variable represents a node in

computational graph.

Dynamic Graphs

Static graphs are nice because user can optimize the graph up front. If programmers are

re-using same graph over and over, then this potentially costly up-front optimization can

be maintained as the same graph is rerun over and over.

The major difference between them is that Tensor Flow’s computational graphs are static

and PyTorch uses dynamic computational graphs.

Optim Package

The optim package in PyTorch abstracts the idea of an optimization algorithm which is

implemented in many ways and provides illustrations of commonly used optimization

algorithms. This can be called within the import statement.

Multiprocessing

Multiprocessing supports the same operations, so that all tensors work on multiple

processors. The queue will have their data moved into shared memory and will only send

a handle to another process.

9. PyTorch – Terminologies

PyTorch

 19

PyTorch includes a package called torchvision which is used to load and prepare the

dataset. It includes two basic functions namely Dataset and DataLoader which helps in

transformation and loading of dataset.

Dataset

Dataset is used to read and transform a datapoint from the given dataset. The basic syntax

to implement is mentioned below:

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,

 download=True, transform=transform)

DataLoader is used to shuffle and batch data. It can be used to load the data in parallel

with multiprocessing workers.

trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,

 shuffle=True, num_workers=2)

Example: Loading CSV File

We use the Python package Panda to load the csv file. The original file has the following

format: (image name, 68 landmarks - each landmark has a x, y coordinates).

landmarks_frame = pd.read_csv('faces/face_landmarks.csv')

n = 65

img_name = landmarks_frame.iloc[n, 0]

landmarks = landmarks_frame.iloc[n, 1:].as_matrix()

landmarks = landmarks.astype('float').reshape(-1, 2)

10. PyTorch – Loading Data

PyTorch

 20

In this chapter, we will be focusing on basic example of linear regression implementation

using TensorFlow. Logistic regression or linear regression is a supervised machine learning

approach for the classification of order discrete categories. Our goal in this chapter is to

build a model by which a user can predict the relationship between predictor variables and

one or more independent variables.

The relationship between these two variables is considered linear i.e., if y is the dependent

variable and x is considered as the independent variable, then the linear regression

relationship of two variables will look like the equation which is mentioned as below:

Y= Ax+b

Next, we shall design an algorithm for linear regression which allows us to understand two

important concepts given below:

 Cost Function

 Gradient Descent Algorithms

The schematic representation of linear regression is mentioned below:

The graphical view of the equation of linear regression is mentioned below:

11. PyTorch – Linear Regression

PyTorch

 21

Following steps are used for implementing linear regression using PyTorch:

Step 1

Import the necessary packages for creating a linear regression in PyTorch using the below

code:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

import seaborn as sns

import pandas as pd

%matplotlib inline

sns.set_style(style='whitegrid')

plt.rcParams["patch.force_edgecolor"] = True

Step 2

Create a single training set with the available data set as shown below:

m = 2 # slope

c = 3 # interceptm = 2 # slope

c = 3 # intercept

x = np.random.rand(256)

noise = np.random.randn(256) / 4

y = x * m + c + noise

df = pd.DataFrame()

df['x'] = x

df['y'] = y

sns.lmplot(x='x', y='y', data=df)

PyTorch

 22

Step 3

Implement linear regression with PyTorch libraries as mentioned below:

import torch

import torch.nn as nn

from torch.autograd import Variable

x_train = x.reshape(-1, 1).astype('float32')

y_train = y.reshape(-1, 1).astype('float32')

class LinearRegressionModel(nn.Module):

 def __init__(self, input_dim, output_dim):

 super(LinearRegressionModel, self).__init__()

 self.linear = nn.Linear(input_dim, output_dim)

 def forward(self, x):

 out = self.linear(x)

 return out

input_dim = x_train.shape[1]

output_dim = y_train.shape[1]

input_dim, output_dim(1, 1)

model = LinearRegressionModel(input_dim, output_dim)

criterion = nn.MSELoss()

[w, b] = model.parameters()

PyTorch

 23

def get_param_values():

 return w.data[0][0], b.data[0]

def plot_current_fit(title=""):

 plt.figure(figsize=(12,4))

 plt.title(title)

 plt.scatter(x, y, s=8)

 w1 = w.data[0][0]

 b1 = b.data[0]

 x1 = np.array([0., 1.])

 y1 = x1 * w1 + b1

 plt.plot(x1, y1, 'r', label='Current Fit ({:.3f}, {:.3f})'.format(w1, b1))

 plt.xlabel('x (input)')

 plt.ylabel('y (target)')

 plt.legend()

 plt.show()

plot_current_fit('Before training')

The plot generated is as follows:

PyTorch

 24

Deep learning is a division of machine learning and is considered as a crucial step taken

by researchers in recent decades. The examples of deep learning implementation include

applications like image recognition and speech recognition.

The two important types of deep neural networks are given below:

 Convolutional Neural Networks

 Recurrent Neural Networks.

In this chapter, we will be focusing on the first type, i.e., Convolutional Neural Networks

(CNN).

Convolutional Neural Networks

Convolutional Neural networks are designed to process data through multiple layers of

arrays. This type of neural networks are used in applications like image recognition or face

recognition.

The primary difference between CNN and any other ordinary neural network is that CNN

takes input as a two dimensional array and operates directly on the images rather than

focusing on feature extraction which other neural networks focus on.

The dominant approach of CNN includes solution for problems of recognition. Top

companies like Google and Facebook have invested in research and development projects

of recognition projects to get activities done with greater speed.

Every convolutional neural network includes three basic ideas:

 Local respective fields

 Convolution

 Pooling

Let us understand each of these terminologies in detail.

Local Respective Fields

CNN utilize spatial correlations that exists within the input data. Each in the concurrent

layers of neural networks connects of some input neurons. This specific region is called

Local Receptive Field. It only focusses on hidden neurons. The hidden neuron will process

the input data inside the mentioned field not realizing the changes outside the specific

boundary.

The diagram representation of generating local respective fields is mentioned below:

12. PyTorch – Convolutional Neural Network

PyTorch

 25

Convolution

In the above figure, we observe that each connection learns a weight of hidden neuron

with an associated connection with movement from one layer to another. Here, individual

neurons perform a shift from time to time. This process is called “convolution”.

The mapping of connections from the input layer to the hidden feature map is defined as

“shared weights” and bias included is called “shared bias”.

Pooling

Convolutional neural networks use pooling layers which are positioned immediately after

CNN declaration. It takes the input from the user as a feature map which comes out

convolutional networks and prepares a condensed feature map. Pooling layers help in

creating layers with neurons of previous layers.

PyTorch

 26

Implementation of PyTorch

Following steps are used to create a Convolutional Neural Network using PyTorch.

Step 1

Import the necessary packages for creating a simple neural network.

from torch.autograd import Variable

import torch.nn.functional as F

Step 2

Create a class with batch representation of convolutional neural network. Our batch shape

for input x is with dimension of (3, 32, 32).

class SimpleCNN(torch.nn.Module):

 def __init__(self):

 super(SimpleCNN, self).__init__()

 #Input channels = 3, output channels = 18

 self.conv1 = torch.nn.Conv2d(3, 18, kernel_size=3, stride=1, padding=1)

 self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

 #4608 input features, 64 output features (see sizing flow below)

 self.fc1 = torch.nn.Linear(18 * 16 * 16, 64)

 #64 input features, 10 output features for our 10 defined classes

 self.fc2 = torch.nn.Linear(64, 10)

Step 3

Compute the activation of the first convolution size changes from (3, 32, 32) to (18, 32,

32).

Size of the dimension changes from (18, 32, 32) to (18, 16, 16). Reshape data dimension

of the input layer of the neural net due to which size changes from (18, 16, 16) to (1,

4608).

Recall that -1 infers this dimension from the other given dimension.

def forward(self, x):

 x = F.relu(self.conv1(x))

 x = self.pool(x)

PyTorch

 27

 x = x.view(-1, 18 * 16 *16)

 x = F.relu(self.fc1(x))

 #Computes the second fully connected layer (activation applied later)

 #Size changes from (1, 64) to (1, 10)

 x = self.fc2(x)

 return(x)

PyTorch

 28

Recurrent neural networks is one type of deep learning-oriented algorithm which follows

a sequential approach. In neural networks, we always assume that each input and output

is independent of all other layers. These type of neural networks are called recurrent

because they perform mathematical computations in a sequential manner completing one

task after another.

The diagram below specifies the complete approach and working of recurrent neural

networks:

In the above figure, c1, c2, c3 and x1 are considered as inputs which includes some hidden

input values namely h1, h2 and h3 delivering the respective output of o1. We will now

focus on implementing PyTorch to create a sine wave with the help of recurrent neural

networks.

During training, we will follow a training approach to our model with one data point at a

time. The input sequence x consists of 20 data points, and the target sequence is

considered to be same as the input sequence.

13. PyTorch — Recurrent Neural Network

PyTorch

 29

Step 1

Import the necessary packages for implementing recurrent neural networks using the

below code:

import torch

from torch.autograd import Variable

import numpy as np

import pylab as pl

import torch.nn.init as init

Step 2

We will set the model hyper parameters with the size of input layer set to 7. There will be

6 context neurons and 1 input neuron for creating target sequence.

dtype = torch.FloatTensor

input_size, hidden_size, output_size = 7, 6, 1

epochs = 300

seq_length = 20

lr = 0.1

data_time_steps = np.linspace(2, 10, seq_length + 1)

data = np.sin(data_time_steps)

data.resize((seq_length + 1, 1))

x = Variable(torch.Tensor(data[:-1]).type(dtype), requires_grad=False)

y = Variable(torch.Tensor(data[1:]).type(dtype), requires_grad=False)

We will generate training data, where x is the input data sequence and y is required target

sequence.

Step 3

Weights are initialized in the recurrent neural network using normal distribution with zero

mean. W1 will represent acceptance of input variables and w2 will represent the output

which is generated as shown below:

w1 = torch.FloatTensor(input_size, hidden_size).type(dtype)

init.normal(w1, 0.0, 0.4)

w1 = Variable(w1, requires_grad=True)

w2 = torch.FloatTensor(hidden_size, output_size).type(dtype)

init.normal(w2, 0.0, 0.3)

w2 = Variable(w2, requires_grad=True)

PyTorch

 30

Step 4

Now, it is important to create a function for feed forward which uniquely defines the neural

network.

def forward(input, context_state, w1, w2):

 xh = torch.cat((input, context_state), 1)

 context_state = torch.tanh(xh.mm(w1))

 out = context_state.mm(w2)

 return (out, context_state)

Step 5

The next step is to start training procedure of recurrent neural network’s sine wave

implementation. The outer loop iterates over each loop and the inner loop iterates through

the element of sequence. Here, we will also compute Mean Square Error (MSE) which helps

in the prediction of continuous variables.

for i in range(epochs):

 total_loss = 0

 context_state = Variable(torch.zeros((1, hidden_size)).type(dtype),

requires_grad=True)

 for j in range(x.size(0)):

 input = x[j:(j+1)]

 target = y[j:(j+1)]

 (pred, context_state) = forward(input, context_state, w1, w2)

 loss = (pred - target).pow(2).sum()/2

 total_loss += loss

 loss.backward()

 w1.data -= lr * w1.grad.data

 w2.data -= lr * w2.grad.data

 w1.grad.data.zero_()

 w2.grad.data.zero_()

 context_state = Variable(context_state.data)

 if i % 10 == 0:

 print("Epoch: {} loss {}".format(i, total_loss.data[0]))

context_state = Variable(torch.zeros((1, hidden_size)).type(dtype),

requires_grad=False)

predictions = []

for i in range(x.size(0)):

PyTorch

 31

 input = x[i:i+1]

 (pred, context_state) = forward(input, context_state, w1, w2)

 context_state = context_state

 predictions.append(pred.data.numpy().ravel()[0])

Step 6

Now, it is time to plot the sine wave as the way it is needed.

pl.scatter(data_time_steps[:-1], x.data.numpy(), s=90, label="Actual")

pl.scatter(data_time_steps[1:], predictions, label="Predicted")

pl.legend()

pl.show()

Output

The output for the above process is as follows:

PyTorch

 32

In this chapter, we will focus more on torchvision.datasets and its various types.

PyTorch includes following dataset loaders:

 MNIST

 COCO (Captioning and Detection)

Dataset includes majority of two types of functions given below:

 Transform – a function that takes in an image and returns a modified version of

standard stuff. These can be composed together with transforms.

 Target_transform – a function that takes the target and transforms it. For

example, takes in the caption string and returns a tensor of world indices.

MNIST

The following is the sample code for MNIST dataset:

dset.MNIST(root, train = TRUE, transform = NONE, target_transform= None,

download = FALSE)

The parameters are as follows:

 root - root directory of the dataset where processed data exist.

 train - True = Training set, False = Test set

 download - True = downloads the dataset from the internet and puts it in the

root.

COCO

This requires the COCO API to be installed. The following example is used to demonstrate

the COCO implementation of dataset using PyTorch:

import torchvision.dataset as dset

import torchvision.transforms as transforms

cap = dset.CocoCaptions(root = ‘ dir where images are’, annFile =’json

annotation file’,

 transform=transforms.ToTensor())

print(‘Number of samples: ‘, len(cap))

print(target)

14. PyTorch – Datasets

PyTorch

 33

The output achieved is as follows:

Number of samples: 82783

Image Size: (3L, 427L, 640L)

PyTorch

 34

Convents is all about building the CNN model from scratch. The network architecture will

contain a combination of following steps:

 Conv2d

 MaxPool2d

 Rectified Linear Unit

 View

 Linear Layer

Training the Model

Training the model is the same process like image classification problems. The following

code snippet completes the procedure of a training model on the provided dataset:

def fit(epoch,model,data_loader,phase='training',volatile=False):

 if phase == 'training':

 model.train()

 if phase == 'training':

 model.train()

 if phase == 'validation':

 model.eval()

 volatile=True

 running_loss = 0.0

 running_correct = 0

 for batch_idx , (data,target) in enumerate(data_loader):

 if is_cuda:

 data,target = data.cuda(),target.cuda()

 data , target = Variable(data,volatile),Variable(target)

 if phase == 'training':

 optimizer.zero_grad()

 output = model(data)

 loss = F.nll_loss(output,target)

 running_loss +=

F.nll_loss(output,target,size_average=False).data[0]

 preds = output.data.max(dim=1,keepdim=True)[1]

 running_correct += preds.eq(target.data.view_as(preds)).cpu().sum()

15. PyTorch – Introduction to Convents

PyTorch

 35

 if phase == 'training':

 loss.backward()

 optimizer.step()

 loss = running_loss/len(data_loader.dataset)

 accuracy = 100. * running_correct/len(data_loader.dataset)

 print(f'{phase} loss is {loss:{5}.{2}} and {phase} accuracy is

{running_correct}/{len(data_loader.dataset)}{accuracy:{return loss,accuracy}})

The method includes different logic for training and validation. There are two primary

reasons for using different modes:

 In train mode, dropout removes a percentage of values, which should not happen

in the validation or testing phase.

 For training mode, we calculate gradients and change the model's parameters

value, but back propagation is not required during the testing or validation phases.

PyTorch

 36

In this chapter, we will focus on creating a convent from scratch. This infers in creating

the respective convent or sample neural network with torch.

Step 1

Create a necessary class with respective parameters. The parameters include weights with

random value.

class Neural_Network(nn.Module):

 def __init__(self,):

 super(Neural_Network, self).__init__()

 self.inputSize = 2

 self.outputSize = 1

 self.hiddenSize = 3

 # weights

 self.W1 = torch.randn(self.inputSize, self.hiddenSize) # 3 X 2 tensor

 self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor

Step 2

Create a feed forward pattern of function with sigmoid functions.

def forward(self, X):

 self.z = torch.matmul(X, self.W1) # 3 X 3 ".dot" does not broadcast in

PyTorch

 self.z2 = self.sigmoid(self.z) # activation function

 self.z3 = torch.matmul(self.z2, self.W2)

 o = self.sigmoid(self.z3) # final activation function

 return o

 def sigmoid(self, s):

 return 1 / (1 + torch.exp(-s))

 def sigmoidPrime(self, s):

 # derivative of sigmoid

 return s * (1 - s)

16. PyTorch – Training a Convent from Scratch

PyTorch

 37

 def backward(self, X, y, o):

 self.o_error = y - o # error in output

 self.o_delta = self.o_error * self.sigmoidPrime(o) # derivative of sig

to error

 self.z2_error = torch.matmul(self.o_delta, torch.t(self.W2))

 self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2)

 self.W1 += torch.matmul(torch.t(X), self.z2_delta)

 self.W2 += torch.matmul(torch.t(self.z2), self.o_delta)

Step 3

Create a training and prediction model as mentioned below:

def train(self, X, y):

 # forward + backward pass for training

 o = self.forward(X)

 self.backward(X, y, o)

def saveWeights(self, model):

 # Implement PyTorch internal storage functions

 torch.save(model, "NN")

 # you can reload model with all the weights and so forth with:

 # torch.load("NN")

def predict(self):

 print ("Predicted data based on trained weights: ")

 print ("Input (scaled): \n" + str(xPredicted))

 print ("Output: \n" + str(self.forward(xPredicted)))

PyTorch

 38

Convolutional neural networks include a primary feature, extraction. Following steps are

used to implement the feature extraction of convolutional neural network.

Step 1

Import the respective models to create the feature extraction model with “PyTorch”.

import torch

import torch.nn as nn

from torchvision import models

Step 2

Create a class of feature extractor which can be called as and when needed.

class Feature_extractor(nn.module):

 def forward(self, input):

 self.feature = input.clone()

 return input

new_net = nn.Sequential().cuda() # the new network

target_layers = [conv_1, conv_2, conv_4] # layers you want to extract`

i = 1

for layer in list(cnn):

 if isinstance(layer,nn.Conv2d):

 name = "conv_"+str(i)

 art_net.add_module(name,layer)

 if name in target_layers:

 new_net.add_module("extractor_"+str(i),Feature_extractor())

 i+=1

 if isinstance(layer,nn.ReLU):

 name = "relu_"+str(i)

17. PyTorch – Feature Extraction in Convents

PyTorch

 39

 new_net.add_module(name,layer)

 if isinstance(layer,nn.MaxPool2d):

 name = "pool_"+str(i)

 new_net.add_module(name,layer)

new_net.forward(your_image)

print (new_net.extractor_3.feature)

PyTorch

 40

In this chapter, we will be focusing on the data visualization model with the help of

convents. Following steps are required to get a perfect picture of visualization with

conventional neural network.

Step 1

Import the necessary modules which is important for the visualization of conventional

neural networks.

import os

import numpy as np

import pandas as pd

from scipy.misc import imread

from sklearn.metrics import accuracy_score

import keras

from keras.models import Sequential, Model

from keras.layers import Dense, Dropout, Flatten, Activation, Input

from keras.layers import Conv2D, MaxPooling2D

import torch

Step 2

To stop potential randomness with training and testing data, call the respective data set

as given in the code below:

seed = 128

rng = np.random.RandomState(seed)

data_dir = "../../datasets/MNIST"

train = pd.read_csv('../../datasets/MNIST/train.csv')

test = pd.read_csv('../../datasets/MNIST/Test_fCbTej3.csv')

img_name = rng.choice(train.filename)

filepath = os.path.join(data_dir, 'train', img_name)

18. PyTorch – Visualization of Convents

PyTorch

 41

img = imread(filepath, flatten=True)

Step 3

Plot the necessary images to get the training and testing data defined in perfect way using
the below code:

pylab.imshow(img, cmap='gray')

pylab.axis('off')

pylab.show()

The output is displayed as below:

PyTorch

 42

In this chapter, we propose an alternative approach which instead relies on a single 2D

convolutional neural network across both sequences. Each layer of our network re-codes

source tokens on the basis of the output sequence produced so far. Attention-like

properties are therefore pervasive throughout the network.

Here, we will focus on creating the sequential network with specific pooling from

the values included in dataset. This process is also best applied in “Image Recognition

Module”.

Following steps are used to create a sequence processing model with convents using

PyTorch:

Step 1

Import the necessary modules for performance of sequence processing using convents.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

import numpy as np

Step 2

Perform the necessary operations to create a pattern in respective sequence using the

below code:

batch_size = 128

num_classes = 10

epochs = 12

19. PyTorch – Sequence Processing with Convents

PyTorch

 43

input image dimensions

img_rows, img_cols = 28, 28

the data, split between train and test sets

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000,28,28,1)

x_test = x_test.reshape(10000,28,28,1)

print('x_train shape:', x_train.shape)

print(x_train.shape[0], 'train samples')

print(x_test.shape[0], 'test samples')

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

Step 3

Compile the model and fit the pattern in the mentioned conventional neural network model

as shown below:

model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adadelta(),

 metrics=['accuracy'])

model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 verbose=1,

 validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

The output generated is as follows:

PyTorch

 44

PyTorch

 45

In this chapter, we will understand the famous word embedding model: word2vec.

Word2vec model is used to produce word embedding with the help of group of related

models. Word2vec model is implemented with pure C-code and the gradient are computed

manually.

The implementation of word2vec model in PyTorch is explained in the below steps:

Step 1

Implement the libraries in word embedding as mentioned below:

import torch

from torch.autograd import Variable

import torch.nn as nn

import torch.nn.functional as F

Step 2

Implement the Skip Gram Model of word embedding with the class called word2vec. It

includes emb_size, emb_dimension, u_embedding, v_embedding type of attributes.

class SkipGramModel(nn.Module):

 def __init__(self, emb_size, emb_dimension):

 super(SkipGramModel, self).__init__()

 self.emb_size = emb_size

 self.emb_dimension = emb_dimension

 self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)

 self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)

 self.init_emb()

 def init_emb(self):

 initrange = 0.5 / self.emb_dimension

 self.u_embeddings.weight.data.uniform_(-initrange, initrange)

 self.v_embeddings.weight.data.uniform_(-0, 0)

 def forward(self, pos_u, pos_v, neg_v):

 emb_u = self.u_embeddings(pos_u)

20. PyTorch – Word Embedding

PyTorch

 46

 emb_v = self.v_embeddings(pos_v)

 score = torch.mul(emb_u, emb_v).squeeze()

 score = torch.sum(score, dim=1)

 score = F.logsigmoid(score)

 neg_emb_v = self.v_embeddings(neg_v)

 neg_score = torch.bmm(neg_emb_v, emb_u.unsqueeze(2)).squeeze()

 neg_score = F.logsigmoid(-1 * neg_score)

 return -1 * (torch.sum(score)+torch.sum(neg_score))

 def save_embedding(self, id2word, file_name, use_cuda):

 if use_cuda:

 embedding = self.u_embeddings.weight.cpu().data.numpy()

 else:

 embedding = self.u_embeddings.weight.data.numpy()

 fout = open(file_name, 'w')

 fout.write('%d %d\n' % (len(id2word), self.emb_dimension))

 for wid, w in id2word.items():

 e = embedding[wid]

 e = ' '.join(map(lambda x: str(x), e))

 fout.write('%s %s\n' % (w, e))

def test():

 model = SkipGramModel(100, 100)

 id2word = dict()

 for i in range(100):

 id2word[i] = str(i)

 model.save_embedding(id2word)

Step 3

Implement the main method to get the word embedding model displayed in proper way.

if __name__ == '__main__':

 test()

PyTorch

 47

Deep neural networks have an exclusive feature for enabling breakthroughs in machine

learning understanding the process of natural language. It is observed that most of these

models treat language as a flat sequence of words or characters, and use a kind of model

which is referred as recurrent neural network or RNN.

Many researchers come to a conclusion that language is best understood with respect to

hierarchical tree of phrases. This type is included in recursive neural networks that take a

specific structure into account.

PyTorch has a specific feature which helps to make these complex natural language

processing models a lot easier. It is a fully-featured framework for all kinds of deep

learning with strong support for computer vision.

Features of Recursive Neural Network

 A recursive neural network is created in such a way that it includes applying same

set of weights with different graph like structures.

 The nodes are traversed in topological order.

 This type of network is trained by the reverse mode of automatic differentiation.

 Natural language processing includes a special case of recursive neural networks.

 This recursive neural tensor network includes various composition functional nodes

in the tree.

The example of recursive neural network is demonstrated below:

21. PyTorch – Recursive Neural Networks

