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Digital Circuits

About the Tutorial

This tutorial is meant to provide the readers to know how to analyze and implement the
combinational circuits and sequential circuits. Based on the requirement, we can use either
combinational circuit or sequential circuit or combination of both. After completing this
tutorial, you will be able to learn the type of digital circuit, which is suitable for specific
application.

Audience

This tutorial is meant for all the readers who are aspiring to learn the concepts of digital
circuits. Digital circuits contain a set of Logic gates and these can be operated with binary
values, 0 and 1.

Prerequisites

A basic idea regarding the initial concepts of Digital Electronics is enough to understand
the topics covered in this tutorial.
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1. Digital Circuits — Number Systems

If base or radix of a number system is 'r’/, then the numbers present in that number system
are ranging from zero to r-1. The total numbers present in that number system is ‘r’. So,
we will get various number systems, by choosing the values of radix as greater than or
equal to two.

In this chapter, let us discuss about the popular number systems and how to represent
a number in the respective number system. The following number systems are the most
commonly used.

e Decimal Number system
e Binary Number system
¢ Octal Number system

e Hexadecimal Number system

Decimal Number System

The base or radix of Decimal number system is 10. So, the numbers ranging from 0 to 9
are used in this number system. The part of the number that lies to the left of the decimal
point is known as integer part. Similarly, the part of the number that lies to the right of
the decimal point is known as fractional part.

In this number system, the successive positions to the left of the decimal point having
weights of 10°, 101, 102, 103 and so on. Similarly, the successive positions to the right of
the decimal point having weights of 10~1, 10~2, 103 and so on. That means, each position
has specific weight, which is power of base 10.

Example

Consider the decimal number 1358.246. Integer part of this number is 1358

and fractional part of this number is 0.246. The digits 8, 5, 3 and 1 have weights of 10°,

101,

10% and 103 respectively. Similarly, the digits 2, 4 and 6 have weights of 10-1, 10~? and
10~3 respectively.

Mathematically, we can write it as
1358:246 = (1 X 103) + (3 x 10%) + (5 X 10") + (8 X 10%) + (2 x 10~1) + (4 x 1072) + (6 x 1073)

After simplifying the right hand side terms, we will get the decimal number, which is on
left hand side.
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Digital Circuits

Binary Number System

All digital circuits and systems use this binary number system. The base or radix of this
number system is 2. So, the numbers 0 and 1 are used in this number system.

The part of the number, which lies to the left of the binary point is known as integer part.
Similarly, the part of the number, which lies to the right of the binary point is known as
fractional part.

In this number system, the successive positions to the left of the binary point having
weights of 2°, 21, 22, 23 and so on. Similarly, the successive positions to the right of the
binary point having weights of 2-1, 2=2, 2-3 and so on. That means, each position has
specific weight, which is power of base 2.

Example

Consider the binary number 1101.011. Integer part of this number is 1101 and
fractional part of this numberis 0.011. The digits 1, 0, 1 and 1 of integer part have weights
of 29, 21, 22 and 23 respectively. Similarly, the digits 0, 1 and 1 of fractional part have
weights of 2-1, 2=2 and 273 respectively.

Mathematically, we can write it as
1101:011 = (1 x23) + (1 x22) + (0x 2 + (A1 x 29 + (0 x 2~1) + (1 x 272) + (1 x 273)

After simplifying the right hand side terms, we will get a decimal number, which is an
equivalent of binary number on left hand side.

Octal Number System

The base or radix of octal number system is 8. So, the numbers ranging from 0 to 7 are
used in this number system. The part of the number that lies to the left of the octal point
is known as integer part. Similarly, the part of the number that lies to the right of the octal
point is known as fractional part.

In this number system, the successive positions to the left of the octal point having weights
of 89, 81, 82, 8% and so on. Similarly, the successive positions to the right of the octal point
having weights of 8-1, 8-2, 8~% and so on. That means, each position has specific weight,
which is power of base 8.

Example

Consider the octal number 1457.236. Integer part of this number is 1457 and fractional
part of this number is 0.236. The digits 7, 5, 4 and 1 have weights of 8°, 8!, 82 and 83
respectively. Similarly, the digits 2, 3 and 6 have weights of 8-, 8-2 and 83 respectively.

Mathematically, we can write it as
1457236 = (1x8%) + (4 x82) + (5x8) + (7% 8% + (2x 8 1) + (3 x872) + (6 x873)

After simplifying the right hand side terms, we will get a decimal number, which is an
equivalent of octal number on left hand side.
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Digital Circuits

Hexadecimal Number System

The base or radix of Hexa-decimal number system is 16. So, the numbers ranging from
0 to 9 and the letters from A to F are used in this number system. The decimal equivalent
of Hexa-decimal digits from A to F are 10 to 15.

The part of the number, which lies to the left of the hexadecimal point is known as
integer part. Similarly, the part of the number, which lies to the right of the Hexa-decimal
point is known as fractional part.

In this number system, the successive positions to the left of the Hexa-decimal point
having weights of 16°, 16', 162, 163 and so on. Similarly, the successive positions to the
right of the Hexa-decimal point having weights of 16~1, 162, 16=3 and so on. That means,
each position has specific weight, which is power of base 16.

Example

Consider the Hexa-decimal number 1A05.2C4. Integer part of this number is 1A05

and fractional part of this number is 0.2C4. The digits 5, 0, A and 1 have weights of 169,

161,

162 and 163 respectively. Similarly, the digits 2, C and 4 have weights of 16~1, 16=2 and
1673 respectively.

Mathematically, we can write it as
1A05:2C4 = (1 X 163) + (10 X 162) + (0 x 16") + (5 x 16°) + 2 x 16™1) + (12 X 1672) + (4 X 1673)

After simplifying the right hand side terms, we will get a decimal number, which is an
equivalent of Hexa-decimal number on left hand side.
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2. Digital Circuits — Base Conversions

In previous chapter, we have seen the four prominent number systems. In this chapter,
let us convert the numbers from one number system to the other in order to find the
equivalent value.

Decimal Number to other Bases Conversion

If the decimal number contains both integer part and fractional part, then convert both
the parts of decimal number into other base individually. Follow these steps for converting
the decimal number into its equivalent number of any base 'r'.

e Do division of integer part of decimal humber and successive quotients with
base ‘r' and note down the remainders till the quotient is zero. Consider the
remainders in reverse order to get the integer part of equivalent number of base
‘r’. That means, first and last remainders denote the least significant digit and most
significant digit respectively.

¢ Do multiplication of fractional part of decimal number and successive fractions
with base 'r" and note down the carry till the result is zero or the desired number
of equivalent digits is obtained. Consider the normal sequence of carry in order to
get the fractional part of equivalent number of base 'r'.

Decimal to Binary Conversion

The following two types of operations take place, while converting decimal number into its
equivalent binary number.

e Division of integer part and successive quotients with base 2.

e Multiplication of fractional part and successive fractions with base 2.

Example

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is
0.25.

Step1: Division of 58 and successive quotients with base 2.

Operation Quotient Remainder
58/2 29 0 (LSB)
29/2 14 1
14/2 7 0

7/2 3 1
3/2 1 1
1/2 0 1 (MSB)

Therefore, the integer part of equivalent binary number is 111010.
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Step 2: Multiplication of 0.25 and successive fractions with base 2.

Digital Circuits

Operation Result Carry
0.25x 2 0.5 0
0.5x2 1.0 1

- 0.0 -

=> 25)10 = ¢01);
Therefore, the fractional part of equivalent binary number is .01.
=> (58:25);9 = (111010-01),
Therefore, the binary equivalent of decimal number 58.25is 111010.01.

Decimal to Octal Conversion

The following two types of operations take place, while converting decimal number into its
equivalent octal number.

e Division of integer part and successive quotients with base 8.

e Multiplication of fractional part and successive fractions with base 8.

Example

Consider the decimal number 58.25. Here, the integer part is 58 and fractional part is
0.25.

Step 1: Division of 58 and successive quotients with base 8.

Operation Quotient Remainder
58/8 7 2
7/8 0 7

=> (58)19 = (72)g
Therefore, the integer part of equivalent octal number is 72.

Step 2: Multiplication of 0.25 and successive fractions with base 8.

Operation Result Carry
0.25x 8 2.00 2
- 0.00 -

=>{25)10 = ¢2)8
Therefore, the fractional part of equivalent octal number is .2.
=> (58—25)10 = (72—2)8

Therefore, the octal equivalent of decimal number 58.25 is 72.2.

11
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Digital Circuits

Decimal to Hexa-Decimal Conversion

The following two types of operations take place, while converting decimal number into its
equivalent hexa-decimal number.

e Division of integer part and successive quotients with base 16.

e Multiplication of fractional part and successive fractions with base 16.

Example

Consider the decimal number 58.25. Here, the integer part is 58 and decimal part is
0.25.

Step 1: Division of 58 and successive quotients with base 16.

Operation Quotient Remainder
58/16 3 10=A
3/16 0 3

=> (58)10 = (3A)16
Therefore, the integer part of equivalent Hexa-decimal number is 3A.

Step 2: Multiplication of 0.25 and successive fractions with base 16.

Operation Result Carry
0.25x 16 4.00 4
- 0.00 -

=>25)10 = 6416
Therefore, the fractional part of equivalent Hexa-decimal number is .4.
=> (58—25)10 = (3A.—4)16

Therefore, the Hexa-decimal equivalent of decimal number 58.25 is 3A.4.

Binary Number to other Bases Conversion

The process of converting a number from binary to decimal is different to the process of
converting a binary number to other bases. Now, let us discuss about the conversion of a
binary number to decimal, octal and Hexa-decimal number systems one by one.

Binary to Decimal Conversion

For converting a binary number into its equivalent decimal number, first multiply the bits
of binary number with the respective positional weights and then add all those products.
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Digital Circuits

Example
Consider the binary number 1101.11.
Mathematically, we can write it as
(1101:11), = (1 x 23) + (1 x 22) 4+ (0 x 21) 4+ (1 x 29) 4+ (1 x 2=1) 4 (1 x 272)
=> (1101:11), =8+4+ 0+ 1+ 0:5 + 0:25 = 13.75
=> (1101-11), = (13-75)4,

Therefore, the decimal equivalent of binary number 1101.11 is 13:75.

Binary to Octal Conversion

We know that the bases of binary and octal number systems are 2 and 8 respectively.
Three bits of binary number is equivalent to one octal digit, since 23 = 8.

Follow these two steps for converting a binary number into its equivalent octal number.

e Start from the binary point and make the groups of 3 bits on both sides of binary
point. If one or two bits are less while making the group of 3 bits, then include
required number of zeros on extreme sides.

e Write the octal digits corresponding to each group of 3 bits.

Example

Consider the binary number 101110.01101.

Step 1: Make the groups of 3 bits on both sides of binary point.
101 110.011 01

Here, on right side of binary point, the last group is having only 2 bits. So, include one
zero on extreme side in order to make it as group of 3 bits.

=> 101 110.011 010
Step 2: Write the octal digits corresponding to each group of 3 bits.

=> (101 110-011 010), = (56.32),
Therefore, the octal equivalent of binary number 101110.01101 is 56.32.

Binary to Hexa-Decimal Conversion

We know that the bases of binary and Hexa-decimal number systems are 2 and 16
respectively. Four bits of binary number is equivalent to one Hexa-decimal digit, since 2% =
16.

Follow these two steps for converting a binary number into its equivalent Hexa-decimal
number.

e Start from the binary point and make the groups of 4 bits on both sides of binary
point. If some bits are less while making the group of 4 bits, then include required
number of zeros on extreme sides.

13
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e Write the Hexa-decimal digits corresponding to each group of 4 bits.

Example
Consider the binary number 101110.01101.

Step 1: Make the groups of 4 bits on both sides of binary point.
10 1110.0110 1

Here, the first group is having only 2 bits. So, include two zeros on extreme side in order
to make it as group of 4 bits. Similarly, include three zeros on extreme side in order to
make the last group also as group of 4 bits.

=> 0010 1110.0110 1000
Step 2: Write the Hexa-decimal digits corresponding to each group of 4 bits.

=> (0010 1110-0110 1000), = (2E. 68)4,
Therefore, the Hexa-decimal equivalent of binary number 101110.01101 is 2E.68.

Octal Number to other Bases Conversion

The process of converting a number from octal to decimal is different to the process of
converting an octal number to other bases. Now, let us discuss about the conversion of an
octal number to decimal, binary and Hexa-decimal humber systems one by one.

Octal to Decimal Conversion

For converting an octal number into its equivalent decimal number, first multiply the digits
of octal number with the respective positional weights and then add all those products.

Example
Consider the octal number 145.23.
Mathematically, we can write it as
(145:23)g = (1 x 82) + (4 x 8) + (5x 8% + (2 x 8~1) + (3 x 872)
=> (145:23)g = 64 + 32 + 5 + 0:25 + 0:05 = 101:3
=> (145:23)g = (101-3)4,

Therefore, the decimal equivalent of octal number 145.23 is 101:3.

Octal to Binary Conversion

The process of converting an octal number to an equivalent binary number is just opposite
to that of binary to octal conversion. By representing each octal digit with 3 bits, we will
get the equivalent binary number.

14
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Example
Consider the octal number 145.23.

Represent each octal digit with 3 bits.
(145:23)g = (001 100 101-010 011),
The value doesn’t change by removing the zeros, which are on the extreme side.

=> (145:23)g = (1100101-010011),
Therefore, the binary equivalent of octal number 145.23 is 1100101:010011.

Octal to Hexa-Decimal Conversion

Follow these two steps for converting an octal number into its equivalent Hexa-decimal
number.

e Convert octal number into its equivalent binary number.

e Convert the above binary humber into its equivalent Hexa-decimal number.

Example
Consider the octal number 145.23.

In previous example, we got the binary equivalent of octal number 145.23 as
1100101:010011.

By following the procedure of binary to Hexa-decimal conversion, we will get
(1100101:010011), = (65:4C) 14

=> (145—23)8 = (65_4C)16

Therefore, the Hexa-decimal equivalent of octal number 145.23 is 65:4C.

Hexa-Decimal Number to other Bases Conversion

The process of converting a number from Hexa-decimal to decimal is different to the
process of converting Hexa-decimal number into other bases. Now, let us discuss about
the conversion of Hexa-decimal humber to decimal, binary and octal number systems one
by one.

Hexa-Decimal to Decimal Conversion

For converting Hexa-decimal number into its equivalent decimal number, first multiply the
digits of Hexa-decimal number with the respective positional weights and then add all
those products.

15
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Example

Consider the Hexa-decimal number 1A5:2.
Mathematically, we can write it as
(1A5:2)16 = (1 x 16%) + (10 x 161) + (5 X 16°) + (2 x 16™1)
=> (1A5:2)14 = 256 + 160 + 5 + 0:125 = 421:125
=> (1A5:2)6 = (421-125)4,

Therefore, the decimal equivalent of Hexa-decimal number 1A5:2 is 421:125.

Hexa-Decimal to Binary Conversion

The process of converting Hexa-decimal number into its equivalent binary number is just
opposite to that of binary to Hexa-decimal conversion. By representing each Hexa-decimal
digit with 4 bits, we will get the equivalent binary number.

Example

Consider the Hexa-decimal nhumber 65.4C.

Represent each Hexa-decimal digit with 4 bits.
(65:4C);¢ = (0110 0101:0100 1100),

The value doesn’t change by removing the zeros, which are at two extreme sides.
=> (65-4C)16 = (1100101-010011),

Therefore, the binary equivalent of Hexa-decimal number 65.4C is 1100101:010011.

Hexa-Decimal to Octal Conversion

Follow these two steps for converting Hexa-decimal number into its equivalent octal
number.

e Convert Hexa-decimal number into its equivalent binary number.

¢ Convert the above binary number into its equivalent octal humber.

Example

Consider the Hexa-decimal number 65.4C.

In previous example, we got the binary equivalent of Hexa-decimal number 65.4C as
1100101-010011.

By following the procedure of binary to octal conversion, we will get

(1100101.010011), = (145.23)g

=> (65_4'(:)16 = (14‘5—23)8

Therefore, the octal equivalent of Hexa-decimal number 65:4C is 145.23.
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3. Digital Circuits — Binary Numbers Representation

We can make the binary numbers into the following two groups: Unsigned numbers and
Signed numbers.

Unsigned Numbers

Unsigned numbers contain only magnitude of the number. They don’t have any sign. That
means all unsigned binary numbers are positive. As in decimal humber system, the placing
of positive sign in front of the number is optional for representing positive numbers.
Therefore, all positive numbers including zero can be treated as unsigned numbers if
positive sign is not assigned in front of the number.

Signed Numbers

Signed numbers contain both sign and magnitude of the number. Generally, the sign is
placed in front of number. So, we have to consider the positive sign for positive numbers
and negative sign for negative numbers. Therefore, all numbers can be treated as signed
numbers if the corresponding sign is assigned in front of the number.

If sign bit is zero, which indicates the binary number is positive. Similarly, if sign bit is
one, which indicates the binary number is negative.

Representation of Un-Signed Binary Numbers

The bits present in the un-signed binary number holds the magnitude of a humber. That
means, if the un-signed binary number contains ‘N’ bits, then all N bits represent the
magnitude of the number, since it doesn’t have any sign bit.

Example

Consider the decimal number 108. The binary equivalent of this number is 1101100.
This is the representation of unsigned binary number.

(108), = (1101100),
It is having 7 bits. These 7 bits represent the magnitude of the number 108.

Representation of Signed Binary Numbers

The Most Significant Bit (MSB) of signed binary numbers is used to indicate the sign of the
numbers. Hence, it is also called as sign bit. The positive sign is represented by placing
‘0’ in the sign bit. Similarly, the negative sign is represented by placing ‘1’ in the sign bit.

If the signed binary number contains *N’ bits, then (N-1) bits only represent the magnitude
of the number since one bit (MSB) is reserved for representing sign of the number.
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There are three types of representations for signed binary numbers.

e Sign-Magnitude form
e 1's complement form

e 2's complement form

Representation of a positive number in all these 3 forms is same. But, only the
representation of negative number will differ in each form.

Example

Consider the positive decimal number +108. The binary equivalent of magnitude of
this number is 1101100. These 7 bits represent the magnitude of the humber 108. Since
it is positive number, consider the sign bit as zero, which is placed on left most side of
magnitude.

(+108),, = (01101100),

Therefore, the signed binary representation of positive decimal number +108 is
01101100. So, the same representation is valid in sign-magnitude form, 1’s complement
form and 2’s complement form for positive decimal number +108.

Sign-Magnitude form

In sign-magnitude form, the MSB is used for representing sign of the number and the
remaining bits represent the magnitude of the number. So, just include sign bit at the
left most side of unsigned binary number. This representation is similar to the signed
decimal numbers representation.

Example

Consider the negative decimal number -108. The magnitude of this numberis 108. We
know the unsigned binary representation of 108 is 1101100. It is having 7 bits. All these
bits represent the magnitude.

Since the given number is negative, consider the sign bit as one, which is placed on left
most side of magnitude.

(=108);, = (11101100),
Therefore, the sign-magnitude representation of -108 is 11101100.

1’s complement form

The 1’s complement of a number is obtained by complementing all the bits of signed
binary number. So, 1's complement of positive number gives a negative number. Similarly,
1’s complement of negative humber gives a positive number.

That means, if you perform two times 1’s complement of a binary number including sign
bit, then you will get the original signed binary number.
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Example

Consider the negative decimal number -108. The magnitude of this number is 108. We
know the signed binary representation of 108 is 01101100.

It is having 8 bits. The MSB of this number is zero, which indicates positive number.
Complement of zero is one and vice-versa. So, replace zeros by ones and ones by zeros
in order to get the negative number.

(=108);0 = (10010011),
Therefore, the 1's complement of (108),, is (10010011),.

2’s complement form

The 2's complement of a binary number is obtained by adding one to the 1’s
complement of signed binary number. So, 2's complement of positive number gives a
negative number. Similarly, 2’s complement of negative nhumber gives a positive number.

That means, if you perform two times 2’s complement of a binary number including sign
bit, then you will get the original signed binary number.

Example

Consider the negative decimal number -108.
We know the 1’s complement of (108)4, is (10010011),.
2’s complement of (108),9 = 1's complement of (108)9 + 1.
= 10010011 +1
= 10010100
Therefore, the 2's complement of (108),, is (10010100),.
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4. Digital Circuits — Signed Binary Arithmetic

In this chapter, let us discuss about the basic arithmetic operations, which can be
performed on any two signed binary numbers using 2’s complement method. The basic
arithmetic operations are addition and subtraction.

Addition of two Signed Binary Numbers

Consider the two signed binary numbers A & B, which are represented in 2's complement
form. We can perform the addition of these two numbers, which is similar to the addition
of two unsigned binary numbers. But, if the resultant sum contains carry out from sign
bit, then discard (ignore) it in order to get the correct value.

If resultant sum is positive, you can find the magnitude of it directly. But, if the resultant
sum is negative, then take 2’s complement of it in order to get the magnitude.

Example 1

Let us perform the addition of two decimal numbers +7 and +4 using 2's complement
method.

The 2's complement representations of +7 and +4 with 5 bits each are shown below.

(+7)10 = (00111),
(+4)10 = (00100),
The addition of these two numbers is
(+7)10 + (+4)19 = (00111), + (00100),
=> (+7)10 + (+4)10 = (01011),.

The resultant sum contains 5 bits. So, there is no carry out from sign bit. The sign bit ‘0’
indicates that the resultant sum is positive. So, the magnitude of sum is 11 in decimal
number system. Therefore, addition of two positive numbers will give another positive
number.

Example 2

Let us perform the addition of two decimal numbers -7 and -4 using 2’s complement
method.

The 2's complement representation of -7 and -4 with 5 bits each are shown below.
(=7)10 = (11001),
(—=4)10 = (11100),
The addition of these two numbers is
(=7)10 + (=4)10 = (11001), + (11100),
=> (=7)19 + (—4)10 = (110101),.
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The resultant sum contains 6 bits. In this case, carry is obtained from sign bit. So, we
can remove it.

Resultant sum after removing carry is (=7)19 + (—4)1 = (10101),.

The sign bit '1’ indicates that the resultant sum is negative. So, by taking 2’'s
complement of it we will get the magnitude of resultant sum as 11 in decimal
number system. Therefore, addition of two negative numbers will give another negative
number.

Subtraction of two Signed Binary Numbers

Consider the two signed binary numbers A & B, which are represented in 2’'s
complement form. We know that 2’s complement of positive number gives a negative
number. So, whenever we have to subtract a number B from number A, then take 2’s
complement of B and add it to A. So, mathematically we can write it as

A—B=A+ (2's complement of B)

Similarly, if we have to subtract the number A from number B, then take 2's
complement of A and add it to B. So, mathematically we can write it as

B —A =B+ (2's complement of A)

So, the subtraction of two signed binary numbers is similar to the addition of two
signed binary numbers. But, we have to take 2’s complement of the number, which is
supposed to be subtracted. This is the advantage of 2's complement technique.
Follow, the same rules of addition of two signed binary numbers.

Example 3

Let us perform the subtraction of two decimal numbers +7 and +4
using 2’s complement method.

The subtraction of these two numbers is
+7)10 — ()10 = (+7)10 + (D10~

The 2's complement representation of +7 and -4 with 5 bits each are shown below.

(+7)10 = (00111),

(=4)10 = (11100),

=> (+7)19 + (—4)10 = (00111), + (11100), = (100011),
Here, the carry obtained from sign bit. So, we can remove it. The resultant sum
after removing carry is
(+7)10 + (—%)10 = (00011),
21
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The sign bit ‘0’ indicates that the resultant sum is positive. So, the magnitude of it is
3 in decimal number system. Therefore, subtraction of two decimal numbers +7 and
+4 is +3.
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