

Artificial Neural Network

simply easy learning

www.tutorialspoint.com

https://twitter.com/tutorialspoint

About the Tutorial

Neural networks are parallel computing devices, which are basically an attempt to make a computer model of the brain. The main objective is to develop a system to perform various computational tasks faster than the traditional systems.

This tutorial covers the basic concept and terminologies involved in Artificial Neural Network. Sections of this tutorial also explain the architecture as well as the training algorithm of various networks used in ANN.

Audience

This tutorial will be useful for graduates, post graduates, and research students who either have an interest in this subject or have this subject as a part of their curriculum. The reader can be a beginner or an advanced learner.

Prerequisites

ANN is an advanced topic, hence the reader must have basic knowledge of Algorithms, Programming, and Mathematics.

Disclaimer & Copyright

© Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at <u>contact@tutorialspoint.com</u>.

Table of Contents

	About the Tutoriali
	Audiencei
	Prerequisitesi
	Disclaimer & Copyrighti
	Table of Contentsii
1.	ANN – BASIC CONCEPTS1
	What is Artificial Neural Network?1
	A Brief History of ANN1
	Biological Neuron2
	Model of Artificial Neural Network5
2.	ANN – BUILDING BLOCKS
	Network Topology6
	Adjustments of Weights or Learning8
	Activation Functions
3.	ANN – LEARNING & ADAPTATION11
	Neural Network Learning Rules11
4.	ARTIFICIAL NEURAL NETWORK – SUPERVISED LEARNING
	Perceptron15
	Adaptive Linear Neuron (Adaline)18
	Multiple Adaptive Linear Neuron (Madaline)20
	Back Propagation Neural Networks22
	Generalized Delta Learning Rule25

5.	ANN – UNSUPERVISED LEARNING	27
	Winner-Takes-All Networks	27
6.	ANN – LEARNING VECTOR QUANTIZATION	33
7.	ANN – ADAPTIVE RESONANCE THEORY	38
	Operating Principal	38
	ART1	38
8.	ANN – KOHONEN SELF-ORGANIZING FEATURE MAPS	42
	Neighbor Topologies in Kohonen SOM	42
9.	ANN – ASSOCIATE MEMORY NETWORK	45
	Auto Associative Memory	45
	Hetero Associative Memory	46
10.	ANN – HOPFIELD NETWORKS	48
	Discrete Hopfield Network	48
	Continuous Hopfield Network	50
11.	ANN – BOLTZMANN MACHINE	51
	Objective of Boltzmann Machine	51
12.	ANN – BRAIN-STATE-IN-A-BOX NETWORK	54
13.	ANN – OPTIMIZATION USING HOPFIELD NETWORK	55
	Travelling Salesman Problem	55
	Solution by Hopfield Network	56
14.	ANN – OTHER OPTIMIZATION TECHNIQUES	58
	Iterated Gradient Descent Technique	58
	Simulated Annealing	59

15.	ANN – GENETIC ALGORITHM	60
	Advantages of GAs	60
	Limitations of GAs	61
	GA – Motivation	61
	How to Use GA for Optimization Problems?	62
16.	ANN – APPLICATIONS OF NEURAL NETWORKS	63
	Why Artificial Neural Networks?	63
	Areas of Application	63

1. ANN – BASIC CONCEPTS

Neural networks are parallel computing devices, which is basically an attempt to make a computer model of the brain. The main objective is to develop a system to perform various computational tasks faster than the traditional systems. These tasks include pattern recognition and classification, approximation, optimization, and data clustering.

What is Artificial Neural Network?

Artificial Neural Network (ANN) is an efficient computing system whose central theme is borrowed from the analogy of biological neural networks. ANNs are also named as "artificial neural systems," or "parallel distributed processing systems," or "connectionist systems." ANN acquires a large collection of units that are interconnected in some pattern to allow communication between the units. These units, also referred to as nodes or neurons, are simple processors which operate in parallel.

Every neuron is connected with other neuron through a connection link. Each connection link is associated with a weight that has information about the input signal. This is the most useful information for neurons to solve a particular problem because the weight usually excites or inhibits the signal that is being communicated. Each neuron has an internal state, which is called an activation signal. Output signals, which are produced after combining the input signals and activation rule, may be sent to other units.

A Brief History of ANN

The history of ANN can be divided into the following three eras:

ANN during 1940s to 1960s

Some key developments of this era are as follows:

- **1943**: It has been assumed that the concept of neural network started with the work of physiologist, Warren McCulloch, and mathematician, Walter Pitts, when in 1943 they modeled a simple neural network using electrical circuits in order to describe how neurons in the brain might work.
- **1949**: Donald Hebb's book, *The Organization of Behavior*, put forth the fact that repeated activation of one neuron by another increases its strength each time they are used.
- **1956**: An associative memory network was introduced by Taylor.

- **1958**: A learning method for McCulloch and Pitts neuron model named Perceptron was invented by Rosenblatt.
- 1960: Bernard Widrow and Marcian Hoff developed models called "ADALINE" and "MADALINE."

ANN during 1960s to 1980s

Some key developments of this era are as follows:

- **1961**: Rosenblatt made an unsuccessful attempt but proposed the "backpropagation" scheme for multilayer networks.
- **1964**: Taylor constructed a winner-take-all circuit with inhibitions among output units.
- **1969**: Multilayer perceptron (MLP) was invented by Minsky and Papert.
- **1971**: Kohonen developed Associative memories.
- **1976**: Stephen Grossberg and Gail Carpenter developed Adaptive resonance theory.

ANN from 1980s till Present

Some key developments of this era are as follows:

- **1982**: The major development was Hopfield's Energy approach.
- **1985**: Boltzmann machine was developed by Ackley, Hinton, and Sejnowski.
- **1986**: Rumelhart, Hinton, and Williams introduced Generalised Delta Rule.
- **1988**: Kosko developed Binary Associative Memory (BAM) and also gave the concept of Fuzzy Logic in ANN.

The historical review shows that significant progress has been made in this field. Neural network based chips are emerging and applications to complex problems are being developed. Surely, today is a period of transition for neural network technology.

Biological Neuron

A nerve cell (neuron) is a special biological cell that processes information. According to an estimation, there are huge number of neurons, approximately 10^{11} with numerous interconnections, approximately 10^{15} .

Schematic Diagram

Working of a Biological Neuron

As shown in the above diagram, a typical neuron consists of the following four parts with the help of which we can explain its working:

- **Dendrites**: They are tree-like branches, responsible for receiving the information from other neurons it is connected to. In other sense, we can say that they are like the ears of neuron.
- **Soma**: It is the cell body of the neuron and is responsible for processing of information, they have received from dendrites.
- **Axon**: It is just like a cable through which neurons send the information.

• **Synapses**: It is the connection between the axon and other neuron dendrites.

ANN versus BNN

Before taking a look at the differences between Artificial Neural Network (ANN) and Biological Neural Network (BNN), let us take a look at the similarities based on the terminology between these two.

Biological Neural Network (BNN)	Artificial Neural Network (ANN)
Soma	Node
Dendrites	Input
Synapse	Weights or Interconnections
Axon	Output

The following table shows the comparison between ANN and BNN based on some criteria mentioned.

Criteria	BNN	ANN
Processing	Massively parallel, slow but superior than ANN	Massively parallel, fast but inferior than BNN
Size	10 ¹¹ neurons and 10 ¹⁵ interconnections	10 ² to 10 ⁴ nodes (mainly depends on the type of application and network designer)
Learning	They can tolerate ambiguity	Very precise, structured and formatted data is required to tolerate ambiguity
Fault tolerance	Performance degrades with even partial damage	It is capable of robust performance, hence has the potential to be fault tolerant
Storage capacity	Stores the information in the synapse	Stores the information in continuous memory locations

Model of Artificial Neural Network

The following diagram represents the general model of ANN followed by its processing.

For the above general model of artificial neural network, the net input can be calculated as follows:

$$y_{in} = x_1.W_1 + x_2.W_2 + x_3.W_3 + ... + x_m.W_m$$

i.e., Net input
$$y_{in} = \sum_{i}^{m} x_i . w_i$$

The output can be calculated by applying the activation function over the net input.

 $Y = F(y_{in})$

Output = function (net input calculated)

End of ebook preview If you liked what you saw... Buy it from our store @ **https://store.tutorialspoint.com**

