tutorialspoint

S I MPLY EASY LEARNINDIG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia :‘ https://twitter.com/tutorialspoint

Fuse

About the Tutonal

JBoss Fuse is an enterprise edition of Apache Servicemix Community Project. Fuse is one of the
finest and low-memory footprint based open source ESB. Fuse is emerging as one of the key
factors in SOA technologies.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Enterprise
integration and ESB. This tutorial will give you enough understanding on creating and deploying
Camel Routes and CXF Web Services with basic understanding of JBoss Fuse.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Core Java and
Maven.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.
Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any
contents or a part of contents of this e-book in any manner without written consent of the
publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.
provides no guarantee regarding the accuracy, timeliness or completeness of our website or its
contents including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com.

i

L

tutorialspoint

EIMPLYEAEYLEARMIMNG

mailto:contact@tutorialspoint.com

Fuse

Table of Contents
ADOUL ThE TULOTTAL......ee ittt e e bt e s r et e snr e e sre e e nn e e nnreeennneenns 1
U Lo [T=] o ot PP P PP PUPRRPPRRPR 1
e (=] (=T0 [T | (=2 PP OO PP PP PPPPPPPPPPPPTNt 1
(070] o)V g [0 a1 a3 B 11T o] F= T2 4 1= oS PPRR 1
LI 1o] (=R o) O] o) 1=T o | £ PP P PP PPRPPRPR 2
1. INTRODUCTION TO ESB ...ttt e s e an e enas 5
WAL IS ESB? ...ttt ettt e e oo a bt e e oo a bt e oo e a b et e e e ea b et e e e aa b et e e e aa b e e e e e anbr e e e e anbre e e e anres 5
The INtegration ProDIEM ... et e e b e e e e 5
WY ESB ...ttt ettt et et e st e e et e e et e et et e e et e st et ettt et et e et et et ee et e et e et n et en e 6
SO A & E S B 7
2. WHAT IS FUSE? oot e e e e e e e e e e e e e e e e eanneees 8
INTEGIAION TO FUSEottt e e et e e e a bt e e e e a b et e e e rabe e e e e rnbe e e e ennnas 8
F N o o 11 (=T o1 (U1 £ PO PSR PP TP RR 8
1070] 1 0] 0 To] gT=] 01 £ SUPPPPRR 8
INSTAIIING FUSE ... oottt e e et e e oo s a b et e e e a b et e e e ab et e e e aabe e e e e rnbeeeeennnnas 9
BaSIiC CONFIGUIALIONeeiiiiiiiie ettt e e e st e e e sbe e e e abbe e e e abreeeeane 10
ConfigUIING MaVEN ... 12
H AW T IO s 13
3. AP ACHE KAR AF . e e e e e 14
LSRR AV o (o] o] [T 1 o PR PTPRP 14
L0 1 PP 14
BUNGIES VS FRATUIESceiiiiiiiii ittt ettt et e e st e e e st et e e ab e e e e abb et e e sbbe e e e sbreeeenae 14
WHhY @NOTHET CONTAINETT?eeiiiiiiiiie et e e sttt e e st bt e e e sabe e e e e sabaeeeesbbeeeesbbeeaeanes 15
N e N O o | @ Y 17
RTAY L Eo LR TSR AN o T= U L= T = Uy 1= USSR 17

2

MPLYEAEYLEARMINEG

w Mtutorialspoint

10.

Fuse

Y= Y Lol T T] o[SRR 17
INSTAll PrOJECT INTO FUSEuiiiiiiii et s et e e e e s e e e e e e e e s s s tn b e e e eaeeesesssntenneaeeeesannnes 20
CAMEL CONCEPTS ..ot e et e e e e e e eaneees 22
B L s 23
ST o] 111 =] SO O PP PP PP P PR PPPPPP P 24
=T 1 0] 1T o 1 = SO PSEEP 26
Exception Handling iN CamMEl..........ooi it 27
Deploying BUNAIE 1N FUSEooiiiiiiiiiiiie ettt et e e s nbn e e e s ananeee s 28
N N O o | 30
WHAL IS APACRE CXF? ottt s 30
SO A P 30
SOAP DeVvelopment USING CXFoiiiiiiiiiiii ettt sttt e s s b e e e s ebr e e e s e 31
REST WEB SERVICES ... oot 33
REST DeVelopment USING CXF ...ttt sttt e e ab e e e aanneee s 33
CrEALE SEIVICE ClASS ... iiiiiiiite ittt et e e e e e e et e e et e e e et e e e ir e e e e annes 35
Create BIUEPIINTXMI ..ottt e e bt e s et e e e et e e e s st et e e e nbeeeeenneas 36
F N N O o | 1YL PP 38
RTAT L = LA E ALY, PR 38
B4 8 TSI T e 1Y, L= 1=7=7= o 1 T PP PPPPPPPPRS 38
Creating QUEUE ANA TOPICS ...ttt ittt e e e et e e e e e e e e e e e aebe e ee e e e e e e s anbbbeeeeaaeeesaanbbbbeeaaaaaeas 39
Browsing /Deleting Contents of the QUEUEcooiiiiiiiiiiie e 41
AMQ WITH CAMEL ...t e e e e e e e e e ae e e ean s 42
Configuring to ACtiveMQ COMPONENTcoiuiiiiiiiiiiee ettt ettt e e s sebe e e e s nbe e e e sebeas 42
e] L 48
WAL IS FADIIC? ..ottt e e et e e et e e e e a bt e e s s et e e e anre e e e e nnnes 48
LAV 0}V =1] o TR OPPTP TR 48

3

MPLYEAEYLEARMINEG

w Mtutorialspoint

Fuse

L= Lo oY 41 | o SO PERPR 49

[(0] 11 ST PSPPSR PRSP 49
DePIOYING @ BUNGIEoeiiiiieie ettt e st e e s bt e e s sbr e e e s annneee s 52
UN-deploying @ BUNAIEoouiiiiiiii e e e e e e s s st e e e e e e s e s snrenaeeeeeesannnes 53

. CHILD CONTAINER ..o e et e e e e e e e et e e eaneees 55
Creating @ Child CONTAINETuiiiiii e e s e et e e e s s r e e e e e e e s e annrrreeaeaaeas 55
Managing & Child CONTAINETuiiiiiiiiie i e e e st e e e s anbre e e s aanneee s 56

. FUSE = ISSUES AND SOLUTIONS ... oot 58
Code Changes are NOt REFIECTEMo.ueiiiiii e e 58
Bundle not Being DOWRNIOAAEMuuuuuuiiiiiiiiiiiiiii s 58
Not Able to Login into FMC (Browser based GUI) ... 59
HAWTIO POIT IS DIffEIENT ... ettt e e e s b e e e s sanneee s 59
AMQ BroKEr iS NOT WOFKING ..ccoiiiiiiiiiiiiie ittt e st e e e e st e e e e sba e e e e sbbeeeeabneeeeanes 60
4

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

1. Introduction to ESB

In this chapter, we will start with the essentials of Enterprise Service Bus. Given below is a
detailed explanation about ESB along with its advantages, disadvantages and a couple of
diagrams for easier understanding.

What is ESB?

ESB stands for Enterprise Service Bus. ESB in its simplest form is a middleware which acts as
an information highway aiding multiple applications to communicate.

In the enterprise world, we develop solutions for many things. These solutions may use different
technologies and different data formats. It becomes cumbersome to use these solutions together
due to compatibility variance of communication or data format in these technologies. Therefore
we need a technology that will allow loosely coupled integration between these different
solutions.

ESB aims to simplify this problem of integration by becoming a ‘HUB’ that sits in the middle of
all your applications and facilitates message routing between them. ESB serves as a mediator,
acting as information highway, taking care of data transformation routing, leaving the Coder or
the Developer to focus on his own application logic.

Understanding ESB becomes very simple when we understand the problem for which it was
especially designed and the solution becomes easy. One should have a clear understanding of
how to enable many disparate systems, written in different languages and running on different
machines using different data formats to share information and form an integrated business
platform.

The Integration Problem

In the enterprise platform, it is common for multiple applications to collaborate and provide
business functionality as a whole, but integration of these applications is the most recurring
problem. It becomes even difficult with time as applications grow.

Each application may input and output data in their own format. This approach works well if the
number of applications is less, but as the number of applications grows, the integration wheels
also need to be churned with a better approach. For instance, if a particular application for a
business needs to be changed, its output or input data format for all the applications having
dependency on that Master application are affected.

Such an approach serves as the biggest hurdle for the Integration which expects a tightly coupled
architecture. This is where ESB comes into the picture. Each application need not communicate
directly with other application; instead, all the applications communicate with the ESB and the
ESB handles the routing of information and internal data format conversion.

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

COBOL

application " | ERP

Web Interface @ 1 Batch systems

New Application

Why ESB?

Following are a few points which explain why Enterprise Service Bus is essential.

e ESB aims to simplify the problem of integration with variant compatible applications.

e It acts as a Middleware, which serves as a mediator of all your applications and
facilitates message routing between them.

o Instead of every application interfacing with every other application directly, each
application now just has one interface to the ESB.

e The ESB is responsible for translating messages to/from a common format and routing
them to their destinations.

e The major saving in this approach comes as a boon if you have to replace any of your
existing applications. Instead of writing a whole bunch of new interfaces, you now only
have one interface to be concerned about (between your application and the ESB).

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

COBOL ERP New Application

L 4 . 4 . J

ESB
Routing
Transformation

Web Interface Batch System

SOA& ESB?

SOA and ESB are commonly used interchangeably, but they are completely different.

SOA is a design pattern which allows application to expose its functionalities as a service over
network via communication protocols, whereas ESB is a model which facilitates communication
between disparate systems, but ESB can be used as a backbone while implementing SOA.

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

2. Whatis Fuse?

JBoss Fuse is an Open source ESB solution by Redhat. It is an enterprise solution based on
community project, Apache Servicemix.

Integration to Fuse

JBoss Fuse is a lightweight and flexible integration platform which allows rapid integration of
enterprise applications.

Fuse was initially developed by Progressive software Inc. which was acquired by Redhat in 2012.
JBoss Fuse 6.1.0.redhat-379 GA is a stable version of Fuse which can be downloaded from their
official website.

Architecture

Fuse combines various technologies together as a single product.

Web Services Framework Integration framework

Reliable Messaging

Core ESB

0SGi Container

Apache Karaf+ Fabric

Redhat JBoss Fuse

Components

Apache CXF

Apache CXF is an open source web services development framework which also supports
development of SOAP & Rest web services.

' tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Apache Camel

Apache Camel is a EIP based integration framework. EIP or Enterprise Integration patterns are
identified solutions to the recurring problems in Enterprise Integration. Complete integration
solution can be achieved meteorically with combinations of these pre-defined out of the box
patterns.

It allows to write routing logic in several Domain Specific Languages like Java, Spring DSL, and
Scala etc.

Apache AMQ

Apache AMQ is a JMS which provides reliable messaging system as per JMS standards. It not
only support JMS specification but also provides some exciting and useful features which are not
included in JMS specifications.

Apache Karaf

Apache Karaf is lightweight OSGi container which acts as runtime for the artifacts. Apache Karaf
is more dynamic in nature as compared to JVM. It allows to install or uninstall modules at
runtime. All the artifacts in Fuse are deployed in Karaf.

Fabric

Fabric provides easy way to manage deployments of artifacts in a large and distributed
environment. It provides centralized management for all multiple fuse instances.

Installing Fuse

Installing Fuse is quite simple. Like other JBoss products, Fuse comes as a zip file that can be
extracted and after some minor configuration changes it can directly be started.

Installing Fuse is a four step process -

Download
Download Fuse 6.1.0 GA from the following link.

http://www.jboss.org/download-manager/file/jboss-fuse-6.1.0.GA-full zip.zip

Unzip

Like all the other JBoss products, Fuse is also a platform independent zip.

Unzip the downloaded file into the destination directory you want to be the Fuse installation
directory. Choose this directory wisely as this should remain same over the lifetime of Fuse
instance.

Note: Even though Fuse unzips and starts like other JBoss products, it is not recommended to
move Fuse installation from one location to another location after installation is complete.

i

L

tutorialspoint

EIMPLYEAEYLEARMIMNG

http://www.jboss.org/download-manager/file/jboss-fuse-6.1.0.GA-full_zip.zip

Fuse

Configure
After you unzip Fuse, you will find the following directories inside the extracted Directory:
e bin
o etc
e deploy
e lib
e licenses
e extras

e quickstarts

Out of which we are going to use only two directories bin & etc.

Virtually after extracting Fuse, we should be able to start fuse directly, but this will start Fuse
with all the default configurations which is not advisable for production environment. It is
strongly recommended to do the following changes before starting Fuse.

Set Environment variables
e Set the following Environment variables - JAVA_HOME
e The variable should point to the java installation directory - M2_HOME
e The variable should point to Maven installation directory - PATH

e Set the path variable to include Java & Maven executables.

Windows

On windows, settings can be done by following the below given instructions:
Start > My Computer > Right Click - Properties - Advanced System settings - Environment
variables.

UNIX & Clones

For each user there is a bash profile in the *nix operating systems. We can add or edit the
existing system variable by changing this file.

$ vi ~/.bash_proflie

Note: Any changes in this file are permanent. It is highly recommended to take a backup of the
existing file before changing the original.

Basic Configuration

We will discuss about the basic configuration of JBoss Fuse and for that we have to start with
the following command Edit $FUSE_INSTALLATION_DIR/etc/

e In user.properties

o #admin=admin,admin

10

i

L

tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

*» This needs to be changed according to the first admin with username we
want, second admin with password, third one might be kept as it is
because it indicates a role and don’t forget to remove #

* For example — FuseAdmin=FusePAss,admin

e In System.properties
o karafName=root
* This indicates the name you want to give to Karaf instance.
= We can name it anything we want like Contl1.

= Make sure this hame you give is unique name and not already being used
by another instance of Fuse.

e In org.ops4j.pax.web.cfg

o Org.osgi.service.http.port=8181

o This property indicates the port that is to be used for accessing browser-based
interface HAWTIO provided by Fuse

o HAWTIO is an in-built browser interface to Fuse which is available from 6.0
onwards

e In org.ops4j.pax.url.mvn.cfg

o org.ops4j.pax.url.mvn.localRepository=D:/repository

11

M tutorialspoint

EIMPLYEAEYLEARMINIEG

Fuse

o This property indicates the path to localRepository of our Maven from where
Fuse will install its artifacts.

o org.ops4j.pax.url.mvn.settings=D:/Maven/conf/settings.xml

o This property indicates settings.xml which Fuse should use to get artifacts from
Maven.

Configuring Maven

Maven is a prerequisite for installing Fuse. If you don't know what maven is please refer to
http://www.tutorialspoint.com/maven/

Maven is a built tool used for building Fuse artifacts. Fuse first searches in Maven local repository
for artifacts when we issue command to install artifact. So we must let Fuse know where Maven
is installed and the path of Maven’s local repository.

Edit $FUSE_INSTALLATION_DIR/etc/org.ops4j.paxurl.mvn.cfg
Update the following two properties:

e org.opsdj.pax.url.mvn.settings=$M2_HOME/conf /settings.xml
e org.ops4j.pax.url.mvn.localRepository=$local_repo

Note: Please change $local_repo with the actual path of your local repository mentioned in
Mavens settings.xml.

Run

After doing basic configuration changes, we can now start Fuse. All the binary files to work with
Fuse are located in $FUSE_INSTALLATION_DIR.

There are two ways to start Fuse:

e Using ./fuse

o This will allow you to see all the progress and logs on the same window in which
you started Fuse.

o It will give you Karaf console in the same terminal as shown below.

Note: This will start fuse in console mode which means Fuse process will also be stopped when
user logs out from session or closes Terminal which is not desirable in production or development
scenario. This script should be used only for debugging Fuse.

e Using ./start

o This won't show any logs on screen not even the progress but this will start Fuse
in background and Fuse service won’t be stopped when user exits session or
closes terminal.

o In the real world Application, this type of behavior is desired. Fuse should be
running in the background even if we close the terminal.

12

i

L

tutorialspoint

EIMPLYEAEYLEARMIMNG

http://www.tutorialspoint.com/maven/

Fuse

o If you want to connect to Fuse running in the background, you can use client
script which is located in the same folder.

o You should get the display as shown in the following screenshot.

o Exiting from client script won't stop Fuse service. It will just close the Fuse
console.

HAWTIO

Fuse also provides complete GUI access to it using FMC (Fuse management console). You can
find GUI on below URL http://localhost:8181.

RED HAT JBOSS FUSE Management Conzole

ActiveMQ Camel Connect Dashboard Threads

™ 1,
v 1t Camal Contexts State Context Route Completed# Failed # Inflight # Mean Time Min Time Max Time @&

v m camel

& [Routes ® camek foute1 2 0 0 267 480
» % routel

» & Endpoints

> MBeans

Everything we did by executing commands can also be done by accessing this browser-based
GUI. It becomes extremely helpful when we have more than one container and we are running
in a Fabric environment.

13

tutorialspoint

EIMPLYEAEYLEARMINIEG

5

http://localhost:8181/

3. Apache Karaf

In this chapter, we will discuss about Apache Karaf and why it is called as a lightweight OSGi
Container along with its benefits and other important features.

The JVM Problem

JVM or Java virtual Machine does not act as an actual virtual machine. A machine which will
allow you to stop, start or restart components running inside it on the fly. It may sometimes
allow hot deployments at class level but there is no way you could deploy or undeploy a
component of your application in your virtual machine without restarting it.

To solve this problem and allow modularity in Java application, Fuse uses an OSGi based runtime
known as Apache Karaf.

OSGi

The OSGi technology is a set of specifications that define a dynamic component system for java.
These specifications allow a development model where applications are (dynamically) composed
of many different (reusable) components.

Benefits of OSGi

¢ Reduced Complexity - Application is built as collaborating components which hide their
implementation details from each other resulting in reduced complexity.

¢ Reusability — Many components can leverage same component deployed in a container.

e Deployment - OSGi provides support for start, stop and update of components on the
fly with its lifecycle management APIs without container restart.

Bundles Vs Features

Following is the comparison between Bundles and Features.

Bundles

Bundles are equivalent to OSGi what jars are to JVM. Bundles are artifacts which are deployable
in an OSGi container. The bundles are components which work together or independently to
form an application.

These bundles can be installed, uninstalled, updated, started or stopped at runtime without
restarting the container.

Features

Features are a way of deploying multiple bundles together. Sometimes it makes more sense to
deploy bundles in group. Features allow us to deploy a group of bundles with just one command.

14

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Why another Container?

Apache Karaf is an OSGi based runtime, it is where our Application bundles run. Fuse uses
Apache Karaf as its runtime in which bundles run and collaborate to provide business
functionality.

Karaf is built on Felix and equinox which are OSGi Frameworks.

Karaf Architecture

)

Consolo

-

L

Blueprint

| Prowvisionning

=

OSGI

Apache Karaf adds the following additional functionalities to basic OSGi runtime.

Hot Deployment

Karaf supports hot deployment. It contains a hot deploy directory. Anything that is placed in this
directory is automatically deployed and installed in Karaf as a bundle.

Logging
Karaf provides centralized logging by generating logs for all bundles in $Fuse_home/data/log.

We can edit logger configuration in org.ops4j.pax.logging.cfg in $Fuse_home/etc
directory.

Admin console

Karaf provides a sophisticated and lucid Admin console to interact with running instance of fuse.
It also provides a pre-installed set of commands which can be used to manage and monitor
components (Bundle) at runtime. This console is extensible so it allows us to add new commands
to the console by adding new bundles to console.

15

@ tutorialspoint

Fuse

SSH Access

Karaf allows remote access to this Admin console with SSH. Anyone with valid credentials can
connect to karaf admin console over SSH terminal.

16

M tutorialspoint

EIMPLYEAEYLEARMINIEG

4. Apache Camel

In this chapter, we will discuss what Apache Camel is and how it effectively routes data between
endpoints, along with a few examples.

What is Apache Camel?

Apache Camel is an open source integration framework which was started in early 2007.

It is an EIP (Enterprise Integration Pattern) based approach which provides several out of the
box patterns implementations that can be used to solve enterprise integration problems. EIP are
nothing but proven solutions to the well documented and recurring problems in enterprise
integration.

Camel is also known as routing and mediation engine as it effectively routes data between
endpoints, while taking heavy load like transformation of data formats, endpoint connectivity
and many more.

Basic Example

The prerequisites to use Apache Camel are:

° Java
¢ Maven
e Redhat JBoss Fuse 6.1-GA-379

Create basic skeleton of Application

mvn:archetype generate -DgroupId=com.tutorialpoint.app -DartifactId=camel-first-app -
DarchetypeGroupId=org.apache.camel.archetypes -DarchetypeArtifactId=camel-archetype-
spring -DinteractiveMode=false -X

17

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

This should generate the following directory structure.

= camel-firt-app
= src
data
= main
= java
= com
= resources
= META-INF
spring
= test
= java
= com
resources

£3 target

This is a basic skeleton of our Camel application being generated.

Edit camel-context.xml

Edit camel-first-app 2 src 2 main = resources > META-INF\spring\camel-context.xml
to match as below

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- here is a sample which processes the input files
(leaving them in place - see the 'noop' flag)
then performs content based routing on the message using XPath -->

<route>

<from uri="file:///d:/src/data?noop=Ffalse"/>

<choice>

<when>

<xpath>/person/city = 'London'</xpath>

18

@' Mtutorialspoint

EIMPLYEAEYLEARMIMNG

http://camel.apache.org/schema/spring

Fuse

<log message="UK message"/>

<to uri="file:///d:/target/messages/uk"/>

</when>

<otherwise>
<log message="Other message"/>
<to uri="file:///d:/target/messages/others"/>

</otherwise>

</choice>
</route>
</camelContext>

</beans>

Edit pom.xml

Add the following code inside <plugins></plugins>

<plugin>
<groupId>org.apache.felix</groupld>

<artifactId>maven-bundle-plugin</artifactId>

<version>2.3.4</version>

<extensions>true</extensions>

<configuration>
<instructions>
<Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
<Import-Package>*</Import-Package>
</instructions>

</configuration>

</plugin>

Change packaging type from jar 2> bundle.

<packaging>bundle</packaging>

Build the project using the following command:

mvn clean install

@' Mtutorialspoint

EIMPLYEAEYLEARMIMNG

19

Fuse

Install Project into Fuse

Start Fuse using Fuse.bat/start.bat. If you start Fuse using start.bat, use client.bat to
connect to Fuse. You should get the UI as shown in the following screenshot.

JBoss Fuse (6.1.8.redhat-379)

it ’<{tab>’ for a list of available commands
nd ’[cmd] ——help’ for help on a specific command.

Open a browser to http://localhost:8181 to access the management console

reate a new Fabric via ’fabric:create’
or join an existing Fabric via ’fabric:join [somelUrlsl’

it ’<{ctrl-d>’ or ’osgi:shutdown’ to shutdown JBoss Fuse.

BossFuse: @ >

This is the CLI for accessing Karaf and Fuse commands.

install -s mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

Test if your Project is Running

Now your application should be installed in Fuse. Copy data directory inside camel-first-app
and place it in D:/src/ and it should copy message having city=London into
D:/target/merssages/uk.

Place the input file in D:/src/data
Input

Messagel.xml

<?xml version="1.0" encoding="UTF-8"?>

<person user="james">
<firstName>James</firstName>
<lastName>Strachan</lastName>
<city>London</city>

</person>

20

M tutorialspoint

EIMPLYEAEYLEARMINIEG

Fuse

Message2.xml

<?xml version="1.0" encoding="UTF-8"?>

<person user="hiram">
<firstName>Hiram</firstName>
<lastName>Chirino</lastName>
<city>Tampa</city>

</person>

Output

In D:/target/messages/uk

<?xml version="1.0" encoding="UTF-8"?>

<person user="james">
<firstName>James</firstName>
<lastName>Strachan</lastName>
<city>London</city>

</person>

In D:/target/messages/others

<?xml version="1.0" encoding="UTF-8"?>

<person user="hiram">
<firstName>Hiram</firstName>
<lastName>Chirino</lastName>
<city>Tampa</city>

</person>

21

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

5. Camel Concepts

In this chapter, we will understand the different Camel Concepts. Let us start by taking a basic
example to understand core concepts to begin with.

CamelContext

Every camel application will have at least one CamelContext. This is the place where we add
camel routes. It is similar to ApplicationContext of Spring.

Camel context can be thought as a container which keeps all things together. One camel context
can have multiple routes inside it.

Routes

CamelContext may contain one or more routes. Routes are the integration logic which defines
how data will flow in camel context from one endpoint to another.

Endpoint

Endpoint is end of channel through which system can send or receive messages. This is what we
call as destination or source in communication language.

Components

Components are point of extension in Camel. Components can be an interface to technology,
data format, transformers, etc. They may also act as a factory for endpoints.

<route>
<from uri="file:///d:/src/data?noop=true"/>
<choice> |
<when> File Component

<xpath>/person/city = 'London'</xpath>

Log Component

Source Endpoint <log message="UK message"/>

/ Destination Endpoint
<to uri="file:///d:/target/messages/uk"/>

</when>
EIP <otherwise>
(Message Router) <log message="Other message"/>

<to uri="file:target/messages/others"/>
</otherwise>
</choice>
</route>

22

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

EIP

EIP stands for Enterprise Integration Pattern. These are identified and well-known solutions to a
recurring problem. Camel supports most of the Enterprise Integration Patterns.

Content Based Router

CBR patterns allow us to route data as per the content of the input file.

—> Inventory
72— |~ —
New Order — P Gadget
Router QHD Qﬂb dﬂb Inventory

This pattern is used when we have to route values depending on the contents of the body of
input.

The following example will read data from D:/data/input directory. After reading, it will check
for value tag inside the data tag. If the value tag contains valuel, it will be sent to D:/valuel,
If it contains value2, it will be sent to D:/value2 and if none of these both, then it will be sent
to others.

<CamelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file:///D:/data/input"/>
<choice>
<when>
<xpath>/data/value = 'valuel'</xpath>
<to uri="file:///D:/valuel”/>
</when>
<when>
<xpath>/data/value = 'value2'</xpath>
<to uri="file:///D:/value2"/>
</when>
<otherwise>
<to uri="file:///D:/others "/>
</otherwise>

</choice>

23

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

http://camel.apache.org/schema/spring%22

Fuse

</route>

</camelContext>

Input

D:/data/input/messagel.xml

<data>
<value>valuel</value>

</data>

D:/data/input/message2.xml

<data>

<value>value2</value>

</data>

Output
D:/valuel/

<data>
<value>valuel</value>

</data>

D:/Value2/

<data>

<value>value2</value>

</data>

Splitter

A splitter pattern is used to split input data into smaller chunks.

O
2]

Order
Iterm 1

MNew Order Splitter

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

Order
Itermn 2

Order
Iterm 3

24

Fuse

This pattern is used most of the times with huge data input which requires to be split in chunks,
so it becomes process-able. It breaks down input into smaller fragments based on input token
string.

<CamelContext xmlns="http://camel.apache.org/schema/spring"”>
<route>
<from uri="file:///D:/inbox"/>
<split streaming="true">
<tokenize token="order" xml="true"/>
<to uri="activemq:queue:order"/>
</split>
</route>

</CamelContext>

Input

D:/inbox/message.xml

<order>
<data>
<value>valuel</value>
</data>
</order>
<order>
<data>
<value>value2</value>
</data>
</order>
<order>

<data>

<value>value3</value>

</data>

</order>

25

@' Mtutorialspoint

EIMPLYEAEYLEARMIMNG

http://camel.apache.org/schema/spring%22

Fuse

Output
If you check AMQ you will find 3 messages posted.

<order>
<data>
<value>valued</value>
</data>

</order>

Recipient List

A recipient list pattern is used when a list of recipient needs to be retrieved from the message
body itself.

Fecipient Channel

— | ~EEED—| A
g ~E)—| B

E)—| C
— | —~@)—| D

In the following example, a message will be sent to all the recipients who are listed in the
customer tag as comma separated list of strings.

Recipient List

<CamelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jms:xmlOrders" />
<recipientList>
<xpath>/order/customer</xpath>

</recipientList>

</route>

</camelContext>

26

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

http://camel.apache.org/schema/spring%22

Fuse

Other EIPs

Camel provides support to almost all the EIPs identified. Some of commonly used EIP are as
mentioned below.

e Log - To log complete message or part of it
¢ Message Filter - Filtering contents of messages
¢ Re-Sequencer - To get all tokens in sequence

e Wiretap - To inspect travelling messages

The complete list of EIP and their usage can be found at Camel’s official documentation
http://camel.apache.org/eip.html

Exception Handling in Camel

Using Error Handler - This is the easiest way to handle exceptions in camel.

To use this, we have to configure Error handler class bean and provide it as reference to
CamelContext errorHandlerRef attribute.

<bean id="loggingErrorHandler" class="org.apache.camel.builder.LoggingErrorHandler">
<property name="logName" value="mylogger.name"/>
<property name="level"” value="DEBUG"/>

</bean>

<camelContext errorHandlerRef=" loggingErrorHandler” >

</camelContext>

Using Try Catch Finally

Camel also supports Java style Try Catch Finally block for error handling.
Just like Java, it has the following three blocks:

e doTry block contains code that may generate exception.
e doCatch block contains code that needs to be executed in case of exception.

e doFinally block has code that must be executed irrespective of exception. It will always
be executed no matter if exception was raised or not.

Note: Mock is testing component and not recommended for other purposes. It is the component
in camel used for testing just like jMOck component in Test driven development.

<route>
<from uri="direct:start"/>

<doTry>

27

i

L

tutorialspoint

EIMPLYEAEYLEARMIMNG

http://camel.apache.org/eip.html

Fuse

<process ref="someProcesorThatmayFail"/>

<to uri="mock:result"/>

<doCatch>
<exception>java.io.IOException</exception>
<exception>java.lang.IllegalStateException</exception>
<to uri="mock:catch"/>

</doCatch>

<doFinally>

<to uri="mock:finally"/>
</doFinally>
</doTry>

</route>

In the above example, we can give a list of exceptions that need to be handled by the catch
block.

Deploying Bundie in Fuse

Start Fuse using Fuse.bat/start.bat.

If you start Fuse using start.bat, use client.bat to connect to Fuse. You should get the UI as
shown in the following screenshot.

JBoss Fuse (6.1.8.redhat-379)

it ’<tab>’ for a list of available commands
nd ’[ecmd]l] ——help’ for help on a specific command.

Open a bhrowser to http://localhost:8181 to access the management console

reate a new Fabric via ’fabric:create’
o join an existing Fabric via ’fabric:join [somelUrls]l’

it ’<ctrl-d>’ or ’osgi:shutdown’ to shutdown JBoss Fuse.

BossFuse: @ >

28

M tutorialspoint

EIMPLYEAEYLEARMINIEG

Fuse

This is the CLI for accessing Karaf and Fuse commands.

install -s mvn:group.id /artifact.id/version

e.g. install -s mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

29

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

6. Apache CXF

In this chapter, let us discuss about what Apache CXF is and how it can be helpful in developing
SOAP and Rest Web Services.

What is Apache CXF?

Apache CXF is a web service development framework that can be utilized to develop SOAP and
Rest web services. CXF is fully compliant with JAX-RS and JAX-Ws standard.

It is most widely used web service development framework now. CXF has learned and improved
over Axis2 which is now gradually being replaced by CXF.

CXF vs Axis2
CXF AXxis2

CXF is most used framework as of Axis2 is gradually being

replaced by CXf.

Improvements | MOW.

. . It requires more code as

It has lot improvements over Axis2 compared to CXF
CXF requires less code as compared | Axis2 requires more code

Code required

to Axis2

comparatively

Standard
Compliance

CSF is fully compliant with JAX-RS
and JAX-WS

Axis2 is not fully compliant with
JAX-RS and JAX-WS

Compatible with
Spring

Yes

No

Separation of
front-ends

Clean separation of front-end from
JAX-WS code

No clean separation is provided

SOAP

SOAP stands for Simple Object Access Protocol. It is a protocol for exchanging structured
information over web services between two systems. It mostly relies on XML for structuring
data and uses HTTP or SMTP for message negotiation and transmission.

30

i

tutorialspoint

EIMPLYEAEYLEARMIMNG

There are two approaches to develop SOAP web services:

o Code first - In this approach, WSDL is generated from code.

o Contract first - In contract first, code is generated from WSDL.

SOAP Development Using CXF

Fuse

Configure Maven

Add the following profile to your settings.xml of Maven.

<profiles>
<profile>

<id>Jboss-Fuse</id>

<activation>
<activeByDefault>true</activeByDefault>

</activation>

<repositories>
<repository>

<id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>

<snapshots>
<enabled>false</enabled>

</snapshots>

<releases>
<enabled>true</enabled>

</releases>

</repository>
</repositories>
</profile>

</profiles>

Create Skeleton

mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle -
DarchetypeVersion=2012.01.0.redhat-60024 -DgroupIld=org.fusesource.example -
DartifactId=cxf-basic -Dversion=1.0-SNAPSHOT

@' Mtutorialspoint

EIMPLYEAEYLEARMIMNG

31

Build Web Service Project

Fuse

mvn clean install

Install web-service into Fuse using the following command

JBossFuse:karaf@root>install -s mvn:org.fusesource.example/cxf-basic/1.0-SNAPSH

Check if bundle has registered SOQP web-service

Open URL http://localhost:8181/cxf

€ 3 C []localhost:8181/cxf

Available SOAP services:

G
1

Person '
! Endpoint address: http:/localhost 818 1/exf Ftrson‘;cr\'m(F
+ GetPerson WSDL : {http.//ws totonials com '} PersonServic
Target namespace: hitp:ws totonals com

Avallable RESTful services

The web-service should be listed as follows.

Testing Web-Service

mvn -Pclient

INFO: Creating Service {http://ws.totorials.com/}PersonService from class com.to

torials.ws.Person

Invoking getPerson...
getPerson._getPerson_personId=Guillaume
getPerson._getPerson_ssn=000-000-0000

getPerson._getPerson_name=Guillaume

[INFO] Total time: 30.668 s

[INFO] Finished at: 2016-02-15T21:01:20+05:30

[INFO] Final Memory: 16M/37M

[INFO] == ---mmmmmm e e e e e e e e e mmccm -

@ tutorialspoint

LYEAEYLEARMINIEG

32

http://localhost:8181/cxf

7. REST Web Services

To begin with, REST stands for Representational State Transfer. It is a way of developing web
services based on state-less, cacheable, client-server protocol, which is HTTP in most cases.

REST web services use HTTP requests to post, get, delete data from network.

REST Development using CXF

Create a simple Maven quick-start project

mvn archetype:generate -DgroupId=com.tuts.abhinav -DartifactId=rest-service

-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Add dependencies

<dependency>
<groupId>org.apache.servicemix.specs</groupId>
<artifactId>org.apache.servicemix.specs.jsr311-api-1.1.1</artifactId>
<version>1.9.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-http</artifactId>
<version>2013.01</version>

</dependency>

<dependency>
<groupId>log4j</groupld>
<artifactId>log4j</artifactId>
<version>1.2.16</version>

</dependency>

Add Build Instruction

<build>
<defaultGoal>install</defaultGoal>

33

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

<plugins>
<plugin>
<groupId>org.apache.felix</groupld>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.3.4</version>
<extensions>true</extensions>
<configuration>
<instructions>

<Bundle-SymbolicName>rest-example-database-
post-method</Bundle-SymbolicName>

<Import-Package>* </Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

Add Fuse Plugin Repositories

<pluginRepositories>
<pluginRepository>
<id>fusesource.m2</id>
<name>FuseSource Community Release Repository</name>
<url>http://repo.fusesource.com/nexus/content/repositories/releases</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>

</releases>

</pluginRepository>

Add Repositories

<repositories>

<repository>

34

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

<id>fusesource.m2</id>
<name>FuseSource Community Release Repository</name>
<url>http://repo.fusesource.com/nexus/content/repositories/releases</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>
<repository>
<id>fusesource.ea</id>
<name>FuseSource Community Early Access Release Repository</name>
<url>http://repo.fusesource.com/nexus/content/groups/ea</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>

</repositories>

Create Service Class

Create class UserService.java under com/tuts/

package com.tuts;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/UserService_1")

public class UserService

{

35

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

@GET
@Path("/get_data")
@Produces(MediaType.APPLICATION_JSON)

public String getUser() {

String reponse = "This is standard response from REST";

return reponse;

Create Blueprintxmi

Create blueprint.xml under/src/main/resources/OSGI-INF/blueprint blueprint.xml

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/vi.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"

xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd

http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/schemas/blueprint/jaxrs.xsd">

<jaxrs:server id="service" address="/users">
<jaxrs:serviceBeans>
<ref component-id="userService" />
</jaxrs:serviceBeans>

</jaxrs:server>

<bean id="userService" class="com.tuts.UserService" />

</blueprint>

Install Rest service in Fuse

install -s mvn:com.tuts.abhinav/rest-service/1.0-SNAPSHOT

w tutorialspoint

EIMPLYEAEYLEARMIMNG

36

Fuse

Check if Bundle has a Registered Web-Service

Open URL http://localhost:8181/cxf

<« C [localhost:8181/cxf

Available SOAP services:

Available RESTful services:

Endpoint address: http://localhost:8181/cxfiusers12
WADL : http://localhost:8181/cxfusers12?_wadl

Test Web Service
Open URL http://localhost:8181/cxf/users12/UserService 1/get data

C [localhost:8181/cxf/users12/UserService_1/get_data

This is standard response from REST

37

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

http://localhost:8181/cxf
http://localhost:8181/cxf/users12/UserService_1/get_data

8. Apache AMQ

In this chapter, we will get to know about ActiveMQ and how it acts as a broker of messages to
allow applications to communicate with each other.

What is AMQ?

ActiveMQ is an open source message broker written in Java. It's fully compliant with JMS 1.1
standards.

JMS is a specification that allows development of message based system. ActiveMQ acts as a
broker of messages which sits in between applications and allows them to communicate in
asynchronous and reliable way.

]]

JMS Messages JMS Messages

JMS Client JMS Client

Types of Messaging

There are two types of messaging options explained below for better understanding.
Point to Point

In this type of communication, the broker sends messages to only one consumer, while the other
consumers will wait till they get the messages from the broker. No consumer will get the same
message.

If there are no consumers, the Broker will hold the messages till it gets a consumer. This type
of communication is also called as Queue based communication where the Producer sends
messages to a queue and only one consumer gets one message from the queue. If there is more
than one consumer, they may get the next message but they won't get the same message as
the other consumer.

38

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Point to Point Messaging

Publish/Subscribe

In this type of communication, the Broker sends same copy of messages to all the active
consumers. This type of communication is also known as Topic based communication where
broker sends same message to all active consumer who has subscribed for particular Topic. This
model supports one-way communication where no verification of transmitted messages is
expected.

Publish/Subscribe messaging

Creating Queue and Topics

Fuse comes bundled with ActiveMQ. We can access ActiveMQ using FMC console (the browser
based interface to work with AMQ).

Login to FMC using localhost:8181 and select ActiveMQ tab.

39

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

ActiveMQ Camel Connect JMX Logs OSGi Teminal Threads
ActiveMQ Tree Ea) Diagram + Create i= Altributes @ Operations (o4 b2
- v
> =3 root
Property Value v
Average message size 1024 . g
e Click on +Create
e Enter Queue/Topic name
e Select Queue/Topic from radio button
e Click on Create Queue/Create topic
=a) Diagram -+ Create = Attributes
Queue name: TestQ)|
e Queue
Topic
Create Queue
Now you should be able to see the TestQ created under root > Queue >
ActiveMQ Camel Connect JMX Logs OSGi Terminal Threads
ActiveMQ Tree al Diagram + Create = Attributes v e b
v &5 root Queue name TestQ
v & Queue
& TestQ
> & Topic
> clientConnectors
=5 Health
> PersistenceAdapte
S 2 s Queye
To check the topic created follow root>Topic.
40

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Browsing /Deleting Contents of the Queue

Fuse

Login to FMC using localhost:8181
Select ActiveMQ tab

Root - Queue > TestQ <select queue that you want to browse> - Browse

Camel Connect Logs 0sGI Threads Teminal
ActivemQ Tree = Browse # Send @ Diagram = Aftrbutes % Delete @ Chart @ Operations v (54 k.4
v o oot M Move xDeete o
v B Queue
& TestQ Message ID Type Priority Timestamp Expires Reply To Correla®:
» & Topic
) D:Abhinavs-52261-1452679256538-3.1:1.1.1 0 2016-01-13T21.33.36+0... 0
v clientConnectars
=5 opemire
% Health
3 PersistenceAdapter
e To check contents of this message, click on that particular message.
ActiveMQ Camel Connect JNX Logs 0sGi Threads Teminal
ActiveMQ Tree # Send [l Diagram i= Attributes X Delete [Chart & Operations w (a1 =
ID:ADhINaVS-52261-1452679256538-5:1:1:11
v =8 oot
v B Queue 1 W M M M eMove JEDPECEE X Close
2T
B T _estQ > Headers & Properties
> = Topic Displaying body as text (63 chars)
w clientConnectors Hi
o - openire 3 This is Test Message
=3 Health

> PersistenceAdapter

Thanks & REgards
Abhinav Suryawanshi

right corner

i

tutorialspoint

EIMPLYEAEYLEARMIMNG

You can delete a particular message by clicking on the Delete button shown on the top

41

9. AMQ with Camel

In this chapter, we will learn the basics of how ActiveMQ works with Camel.

Configuring to ActiveMQ Component

Before we can use ActiveMQ queue or topic in our code we have to configure
ActiveMQComponent. Minimal configuration of ActiveMQComponent can be done as shown in the
following program -

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616"/>
<property name="userName" value="admin"/>
<property name="password" value="admin"/>

</bean>

e brokerURL- Specifies host and port for AMQ Broker.
e username - Specifies username to use for connecting to AMQ Broker.

e password - specifies password for connecting to AMQ Broker.

Connecting to Queue

Now that we have configured ActiveMQComponent, we can use it in our CamelContext as
endpoint.

We will use AMQ endpoint in the following format -

Activemq: [queue |topic]:[queueName |topicName]

Writing Messages to AMQ

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

42

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

After deploying this bundle in Fuse container, you should be able to see messages posted to
AMQ which were placed as files in D:/src/data.

Input
D:/src/data/input.txt

Test me

Output

ActiveMQ Connect JMX Logs 05Gi Teminal Threads

ActiveMQ Tree = Brows # Send &l Diagram E B Chart v 1 .4
1D 538111114
W ool
v B Queve 171 W KW M| M Move X Close
& TestQ
¥ Headers & Properties
> & Topic N . .
Displaying body as bytes (8 bytes) and text (8 chars
» [0 clientConnactors
> dynamicProducer @ 6d 65 20
Health tex
3 | PersistenceAdapter Test me
Reading from AMQ
<?xml version="1.0" encoding="UTF-8"?>
<!-- Configures the Camel Context-->
<beans xmlns="http://www.springframework.org/schema/beans”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">
<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- here is a sample which processes the input files
(leaving them in place - see the 'noop' flag)
then performs content based routing on the message using XPath -->
<route>
<from uri="activemq:queue:TestQ"/>
<to uri="file:///d:/src"/>
43

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

</route>
</camelContext>
<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616"/>
<property name="userName" value="admin"/>
<property name="password" value="admin"/>
</bean>

</beans>

Input

After deploying this bundle, you should see a file being generated in D:/src and messages are
consumed. Also Consumer should be shown for that Queue.

ActiveMQ Tree = Browse # Send [Diagram = Attributes B Chart & Operations x Delete v a4 b
v root -~ x t [
v & Queve
v & TestQ Message ID Type Priority Timestamp Expires Reply To Correla®:
w Consumer
> ID_AbhinavS-52261-145267¢
» & Topic
> clientConnectors
Health
> Persistenceddapter
»
D:/src
Test me

Writing to Topic

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

44

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- here is a sample which processes the input files
(leaving them in place - see the 'noop' flag)
then performs content based routing on the message using XPath -->
<route>
<from uri="file:///d:/src"/>
<to uri="activemq:topic:TestTopic” />
</route>
</camelContext>
<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616"/>
<property name="userName" value="admin"/>
<property name="password" value="admin"/>
</bean>

</beans>

Reading from Topic

<?xml version="1.0" encoding="UTF-8"?>

<l-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- here is a sample which processes the input files
(leaving them in place - see the 'noop' flag)
then performs content based routing on the message using XPath -->
<route>

<from uri="activemq:topic:TestTopic"/>

45

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

<to uri="file:///d:/src2"/>
</route>
</camelContext>
<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616"/>
<property name="userName" value="admin"/>
<property name="password" value="admin"/>
</bean>

</beans>

Input
D:/src/filel.xml

<order>
<data>
<value>valuel</value>
</data>
</order>
<order>
<data>
<value>value2</value>
</data>
</order>
<order>
<data>
<value>value3</value>
</data>

</order>

Output

D:/src/

<order>
<data>
<value>valuel</value>

</data>

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

46

Fuse

</order>
<order>
<data>
<value>value2</value>
</data>
</order>
<order>
<data>
<value>value3</value>
</data>

</order>

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

47

10. Fabric

What is Fabric?

Fabric provides management and orchestration capabilities for multiple Fuse instances. Fabric
allows us to control all Fuse instances connected to it from a single point. A normal Fuse container
can be converted to act as a Fabric. Fabric has fabric registry in it which serves as data store
that contains all information regarding containers, it manages.

Why Fabric?

Fabric has the following special abilities which makes it an ideal candidate for use in distributed
environments.

¢ Monitoring the state of all containers in the fabric.

e Starting and stopping remote containers.

e Provisions remote container to run a particular application.

e Upgrading applications and rolling out patches in the live system.

e Starting and provisioning with new containers quickly for example to cope with
increased load on the system.

managed R = fabric registry agent

container managed A = fabric agent
container
@ RDB = registry database

fabric server fabric server

managed
container

managed
container

managed
container

managed
container

48

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Fabric Setup

Creating Fabric

Normal Fuse container can be converted to Fabric by using the following command

fabric: create --clean --zookeeper-password myZooPass

Connecting other container to Fabric:

fabric:join --zookeeper-password myZooPass <fabric_host>:2181 Contl

Note: Please replace <fabric_host> with actual host name on which fabric is running.

When you login to the Fuse Management Console from your browser using localhost:8181, you
should be able to see two containers as shown in the following screenshot. The Fabric container
is indicated by a small cloud symbol in front of it.

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health

Containers Profiles Manage Map Registry MQ APIs EIPs

@ +Create

(O]
=3
o
o

Profiles

A Profile contains the following information -

e Bundles to be installed
e Features to be installed

e Configurations to be applied

A Profile provides a way in fabric environment to install same set of bundles, features and
configuration on multiple servers.

If the same profile is applied to multiple containers and we do changes to that profile from any
container similar changes will be deployed automatically to the remaining containers to which it
is applied.

49

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

localhost:8181

Fuse

Creating Profiles
e Login in to FMC localhost:8181

e Runtime - Manage

e In the left hand side under Profile menu click on +

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health

Containers Profiles Manage MQ APIs EIPs Registry Map
Versions Containers
1
o M ®root /1.0
Profiles
Uncategorized

Enter the name you want to give to the profile and click create.

Create new Profile in Version 1.0

Profile Name:

First_profile

After this, the profile should be created.

Applying Profile to Container

Runtime - Containers - root (select the container you want)

50

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

localhost:8181

Fuse

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard

Containers Profiles Manage MQ APIs EIPs Registry Map

® Container: root
Associated Profiles

This is the current set of profiles that are assigned to this
container. Use the add and remove buttons to manage this
list.
+ Add | X Remove
Uncategorized
& fabric
Jboss / Fuse
& full

Click Add which will lead to a pop-up box. Search for the profile you want and then again click
Add.

Add profiles to container: root

Select one or more profiles to add to this container:
Fill

Uncategorized

& First_profile

51

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

The profile should be shown in the list as shown in the following screenshot.

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health

Containers Profiles Manage MQ APIs EIPs Registry Map

® Container: root
Associated Profiles

This is the cumrent set of profiles that are assigned to this
container. Use the add and remove buttons to manage this
list.
4+ Add | X Remove
Uncategorized
& fabric
& First_profile

Jboss / Fuse
& full

Deploying a Bundie

To deploy a bundle, use the following path:

Runtime > Containers - root (select the container you want) > First_profile (select profile)

Uncategorized
& fabric
& First_profile

Jboss / Fuse
& full

Click the Bundles tab. Set the bundle path in the following format and then click +.

mvn:group.id/artifact.id/version

52

|§j’ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

For example: mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT
Fl I’St_pI'Oﬁ I e (& Configuration < Refresh 2] Copy # Assign & New

Assigned to 1 containe

Features (0) Feature Repositories (0) Bundles (0) FABs (0)

Add:

example: "mvn:group.id/artifact.id/version”

Features (0) Feature Repositories (0) Bundles (1) FABs (0)
X mvn:com.tutoralpoint.app/camel-irt-app/1.0-SNAPSHOT
Add:

example: "mvn:group.id/artifact.id/version"

A bundle will be added to the profile and will be deployed on all the containers to which the
profile is assigned.

Un-deploying a Bundle

To un-deploy a bundle, use the following path:

Runtime > Containers > root (select container you want) - First_profile (select profile)
Uncategorized
& fabric

& First_profile

Jboss / Fuse

& full

Click the Bundles tab and search for the bundle that you want to delete and then click on X. The
Bundle will be deleted from all the containers to which the profile is applied.

53

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Features (0) Feature Repositories (0) Bundles (1) FABs (0)

®x mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

Add: +

example: "mvn:group.id/artifact.id/version”

54

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

11. Child Container

A Child Container provides the easiest way to manage the increasing load. When the system is
experiencing sudden load in traffic and a single container is not able to cope up with the load,
we can easily create a set of child containers and distribute the load among them, rather than
creating a complete new container.

Creating a Child Container

Login to FMC using localhost:8181

Now, follow the path: Runtime - container - +Create (button on right hand side)

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health

Containers Profiles Manage MQ Registry v
0@ Filter x @ < Create
D®root/1.0 &

Enter details like child name, parent container Number of instances etc.

Create New Container

Clicking this button will configure and start the container. It may take Container Type: | child v
some time for the new container to appear on the container list page
depending on the creation method.

Common Advanced
+ Create And Start Container)
Container Name: Child1
Selected Profiles
Parent Container: root v

No nmofilee cglected
Jmx user: admin

Jmx password: | sseee
Save jmx credentials: ¥

Number of containers: | 1|

55

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

localhost:8181

Click Create And Start Container

Fuse

® Child1 /1.0

Managing a Child Container

A Child container acts as a normal container only.

Stopping a Child Container
To stop a child container, follow the path: Runtime - Container - Child1

Click Stop to stop the Child Container.

Containers Profiles Manage MQ Registry v
® Container: Child1 mopen | OSwp | xDelte | @
Associated Profiles

This is the cument set of profiles that are assigned to this container. Use the add and remove
buttons to manage this list

+ Add @ X Remove
Uncategorized

& default

Starting a Child Container
To start a child container, follow the path: Runtime > Container > Child1

Click Start to start the child container.

w Mtutorialspoint

EIMPLYEAEYLEARMIMNG

56

Runtime Wiki Dashboard Health

Containers Profiles Manage

) Container: Child1

Associated Profiles

MQ

Registry

Map

APIs

® Start % Delete

(Y

This is the cument set of profiles that are assigned to this container. Use the add and remove buttons to

manage this list.

Uncategorized

& default

+ Add

X Remove

Fuse

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

57

12. Fuse —Issues and Solutions

In this chapter, we will discuss a few known issues that you might encounter while working with
Fuse. We will also discuss how you can get over these issues.

Code Changes are not Reflected

Connect to Fuse instance using a client script. Search the bundle for which you are facing an
issue, using the following command.

JBossFuse:karaf@root> list|grep <Bundle Description>
For Example:
JBossFuse:karaf@root> list|grep Camel

[255] [Active 11 11 11 60] Fabric8 :: Camel Component
(1.0.0.redhat-379)

[266] [Active 11 1 [Started] [60] A Camel Spring Route
(1.0.0.SNAPSHOT)

Note: Bundle ID for the bundle from output of above command and use below command.

JBossFuse:karaf@root>update <bundle id>

JBossFuse:karaf@root>update 266

Bundle not Being Downloaded

It may happen because of the following two reasons -

e Maven repository not specified

e Bundle not present in repository

Maven Repository not Specified

Maven is a built tool used for building Fuse artifacts. Fuse first searches in Maven local repository
for artifacts, when we issue command to install artifact. So we must let Fuse know where Maven
is installed and path of Mavens local repository.

Edit $FUSE_INSTALLATION_DIR/etc/org.ops4j.paxurl.mvn.cfg
Update the following two properties -

e org.ops4j.pax.url.mvn.settings=$M2_HOME/conf /settings.xml

e org.ops4j.pax.url.mvn.localRepository=$local_repo

Note: Please change $local_repo with actual path of your local repository mentioned in Mavens
settings.xml

58

@ tutorialspoint

EIMPLYEAEYLEARMIMNG

Fuse

Bundle not Present in Repository

If Maven settings are in place but still if you face issues while downloading the bundle, make
sure bundles JAR is present at the correct location in Maven Repository.

For Example, if the following bundle is throwing errors while downloading -
mvn:com.tutorialpoint.app/camel-first-app/1.0-SNAPSHOT

We have to check in $M2_REPO/com/tutorialpoint/app/camel-first-app/1.0-SNAPSHOT if actual
JAR is present.

Note: $M2_REPO needs to be replaced with actual path of Maven repository we have Fuse
configured to use.

Not Able to Login into FMC (Browser based GUI)

Users not Created - If you are getting the following UI but not able to login with a message
saying “Failed to log in, Forbidden”.

U Faied to log in, Forbidden

RED HAT JBOSS FUSE MANAGEMENT CONSOLE &) redhat.

Username ‘ admin12

B Remember me

Check whether you have added users in
$FUSE_INSTALLATION_HOME/etc/users.properties

The correct format to add users is -

Username=Password,Role

HAWTIO Port is Different

If you are not even able to get the UI at localhost:8181 in the browser, check if you have
mentioned correct port in URL.

$FUSE_INSTALLATION_HOME/etc/org.ops4j.pax.web.cfg
59

@ tutorialspoint

Fuse

Edit the following property in the file to use port you want to access.

org.osgi.service.http.port=8181

AMQ Broker is not working

Make sure that the 61616 port is open and not being currently used by another port. If you want
to change the default 61616 port for the same, vyou <can edit it in
$FUSE_INSTALLATION_HOME/etc/System.properties

activemq.port = 61616

60

MPLYEAEYLEARMINEG

w Mtutorialspoint

