
Fuse

0

Fuse

1

About the Tutorial

JBoss Fuse is an enterprise edition of Apache Servicemix Community Project. Fuse is one of the

finest and low-memory footprint based open source ESB. Fuse is emerging as one of the key

factors in SOA technologies.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Enterprise

integration and ESB. This tutorial will give you enough understanding on creating and deploying

Camel Routes and CXF Web Services with basic understanding of JBoss Fuse.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Core Java and

Maven.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.

Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any

contents or a part of contents of this e-book in any manner without written consent of the

publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.

provides no guarantee regarding the accuracy, timeliness or completeness of our website or its

contents including this tutorial. If you discover any errors on our website or in this tutorial,

please notify us at contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

Fuse

2

Table of Contents

About the Tutorial .. 1

Audience... 1

Prerequisites .. 1

Copyright & Disclaimer ... 1

Table of Contents .. 2

1. INTRODUCTION TO ESB .. 5

What is ESB? ... 5

The Integration Problem ... 5

Why ESB?... 6

SOA & ESB? ... 7

2. WHAT IS FUSE? .. 8

Integration to Fuse .. 8

Architecture ... 8

Components ... 8

Installing Fuse ... 9

Basic Configuration .. 10

Configuring Maven .. 12

HAWTIO .. 13

3. APACHE KARAF ... 14

The JVM Problem .. 14

OSGi .. 14

Bundles Vs Features ... 14

Why another Container? ... 15

4. APACHE CAMEL ... 17

What is Apache Camel? .. 17

Fuse

3

Basic Example ... 17

Install Project into Fuse .. 20

5. CAMEL CONCEPTS .. 22

EIP ... 23

Splitter .. 24

Recipient List ... 26

Exception Handling in Camel ... 27

Deploying Bundle in Fuse .. 28

6. APACHE CXF ... 30

What is Apache CXF? ... 30

SOAP ... 30

SOAP Development Using CXF ... 31

7. REST WEB SERVICES .. 33

REST Development using CXF .. 33

Create Service Class ... 35

Create Blueprint.xml ... 36

8. APACHE AMQ .. 38

What is AMQ? .. 38

Types of Messaging .. 38

Creating Queue and Topics .. 39

Browsing /Deleting Contents of the Queue .. 41

9. AMQ WITH CAMEL .. 42

Configuring to ActiveMQ Component ... 42

10. FABRIC ... 48

What is Fabric? .. 48

Why Fabric? ... 48

Fuse

4

Fabric Setup ... 49

Profiles.. 49

Deploying a Bundle ... 52

Un-deploying a Bundle ... 53

10. CHILD CONTAINER ... 55

Creating a Child container .. 55

Managing a Child Container ... 56

11. FUSE – ISSUES AND SOLUTIONS ... 58

Code Changes are not Reflected ... 58

Bundle not Being Downloaded .. 58

Not Able to Login into FMC (Browser based GUI) ... 59

HAWTIO Port is Different .. 59

AMQ Broker is not working .. 60

Fuse

5

In this chapter, we will start with the essentials of Enterprise Service Bus. Given below is a

detailed explanation about ESB along with its advantages, disadvantages and a couple of

diagrams for easier understanding.

What is ESB?

ESB stands for Enterprise Service Bus. ESB in its simplest form is a middleware which acts as

an information highway aiding multiple applications to communicate.

In the enterprise world, we develop solutions for many things. These solutions may use different

technologies and different data formats. It becomes cumbersome to use these solutions together

due to compatibility variance of communication or data format in these technologies. Therefore

we need a technology that will allow loosely coupled integration between these different

solutions.

ESB aims to simplify this problem of integration by becoming a ‘HUB’ that sits in the middle of

all your applications and facilitates message routing between them. ESB serves as a mediator,

acting as information highway, taking care of data transformation routing, leaving the Coder or

the Developer to focus on his own application logic.

Understanding ESB becomes very simple when we understand the problem for which it was

especially designed and the solution becomes easy. One should have a clear understanding of

how to enable many disparate systems, written in different languages and running on different

machines using different data formats to share information and form an integrated business

platform.

The Integration Problem

In the enterprise platform, it is common for multiple applications to collaborate and provide

business functionality as a whole, but integration of these applications is the most recurring

problem. It becomes even difficult with time as applications grow.

Each application may input and output data in their own format. This approach works well if the

number of applications is less, but as the number of applications grows, the integration wheels

also need to be churned with a better approach. For instance, if a particular application for a

business needs to be changed, its output or input data format for all the applications having

dependency on that Master application are affected.

Such an approach serves as the biggest hurdle for the Integration which expects a tightly coupled

architecture. This is where ESB comes into the picture. Each application need not communicate

directly with other application; instead, all the applications communicate with the ESB and the

ESB handles the routing of information and internal data format conversion.

1. Introduction to ESB

Fuse

6

Why ESB?

Following are a few points which explain why Enterprise Service Bus is essential.

 ESB aims to simplify the problem of integration with variant compatible applications.

 It acts as a Middleware, which serves as a mediator of all your applications and

facilitates message routing between them.

 Instead of every application interfacing with every other application directly, each

application now just has one interface to the ESB.

 The ESB is responsible for translating messages to/from a common format and routing

them to their destinations.

 The major saving in this approach comes as a boon if you have to replace any of your

existing applications. Instead of writing a whole bunch of new interfaces, you now only

have one interface to be concerned about (between your application and the ESB).

Fuse

7

SOA & ESB?

SOA and ESB are commonly used interchangeably, but they are completely different.

SOA is a design pattern which allows application to expose its functionalities as a service over

network via communication protocols, whereas ESB is a model which facilitates communication

between disparate systems, but ESB can be used as a backbone while implementing SOA.

Fuse

8

JBoss Fuse is an Open source ESB solution by Redhat. It is an enterprise solution based on

community project, Apache Servicemix.

Integration to Fuse

JBoss Fuse is a lightweight and flexible integration platform which allows rapid integration of

enterprise applications.

Fuse was initially developed by Progressive software Inc. which was acquired by Redhat in 2012.

JBoss Fuse 6.1.0.redhat-379 GA is a stable version of Fuse which can be downloaded from their

official website.

Architecture

Fuse combines various technologies together as a single product.

Components

Apache CXF

Apache CXF is an open source web services development framework which also supports

development of SOAP & Rest web services.

2. What is Fuse?

Fuse

9

Apache Camel

Apache Camel is a EIP based integration framework. EIP or Enterprise Integration patterns are

identified solutions to the recurring problems in Enterprise Integration. Complete integration

solution can be achieved meteorically with combinations of these pre-defined out of the box

patterns.

It allows to write routing logic in several Domain Specific Languages like Java, Spring DSL, and

Scala etc.

Apache AMQ

Apache AMQ is a JMS which provides reliable messaging system as per JMS standards. It not

only support JMS specification but also provides some exciting and useful features which are not

included in JMS specifications.

Apache Karaf

Apache Karaf is lightweight OSGi container which acts as runtime for the artifacts. Apache Karaf

is more dynamic in nature as compared to JVM. It allows to install or uninstall modules at

runtime. All the artifacts in Fuse are deployed in Karaf.

Fabric

Fabric provides easy way to manage deployments of artifacts in a large and distributed

environment. It provides centralized management for all multiple fuse instances.

Installing Fuse

Installing Fuse is quite simple. Like other JBoss products, Fuse comes as a zip file that can be

extracted and after some minor configuration changes it can directly be started.

Installing Fuse is a four step process –

Download

Download Fuse 6.1.0 GA from the following link.

http://www.jboss.org/download-manager/file/jboss-fuse-6.1.0.GA-full_zip.zip

Unzip

Like all the other JBoss products, Fuse is also a platform independent zip.

Unzip the downloaded file into the destination directory you want to be the Fuse installation

directory. Choose this directory wisely as this should remain same over the lifetime of Fuse

instance.

Note: Even though Fuse unzips and starts like other JBoss products, it is not recommended to

move Fuse installation from one location to another location after installation is complete.

http://www.jboss.org/download-manager/file/jboss-fuse-6.1.0.GA-full_zip.zip

Fuse

10

Configure

After you unzip Fuse, you will find the following directories inside the extracted Directory:

 bin

 etc

 deploy

 lib

 licenses

 extras

 quickstarts

Out of which we are going to use only two directories bin & etc.

Virtually after extracting Fuse, we should be able to start fuse directly, but this will start Fuse

with all the default configurations which is not advisable for production environment. It is

strongly recommended to do the following changes before starting Fuse.

Set Environment variables

 Set the following Environment variables – JAVA_HOME

 The variable should point to the java installation directory – M2_HOME

 The variable should point to Maven installation directory – PATH

 Set the path variable to include Java & Maven executables.

Windows

On windows, settings can be done by following the below given instructions:

Start  My Computer  Right Click  Properties  Advanced System settings  Environment

variables.

UNIX & Clones

For each user there is a bash profile in the *nix operating systems. We can add or edit the

existing system variable by changing this file.

$ vi ~/.bash_proflle

Note: Any changes in this file are permanent. It is highly recommended to take a backup of the

existing file before changing the original.

Basic Configuration

We will discuss about the basic configuration of JBoss Fuse and for that we have to start with

the following command Edit $FUSE_INSTALLATION_DIR/etc/

 In user.properties

o #admin=admin,admin

Fuse

11

 This needs to be changed according to the first admin with username we

want, second admin with password, third one might be kept as it is

because it indicates a role and don’t forget to remove #

 For example – FuseAdmin=FusePAss,admin

 In System.properties

o karafName=root

 This indicates the name you want to give to Karaf instance.

 We can name it anything we want like Cont1.

 Make sure this name you give is unique name and not already being used

by another instance of Fuse.

 In org.ops4j.pax.web.cfg

o Org.osgi.service.http.port=8181

o This property indicates the port that is to be used for accessing browser-based

interface HAWTIO provided by Fuse

o HAWTIO is an in-built browser interface to Fuse which is available from 6.0

onwards

 In org.ops4j.pax.url.mvn.cfg

o org.ops4j.pax.url.mvn.localRepository=D:/repository

Fuse

12

o This property indicates the path to localRepository of our Maven from where

Fuse will install its artifacts.

o org.ops4j.pax.url.mvn.settings=D:/Maven/conf/settings.xml

o This property indicates settings.xml which Fuse should use to get artifacts from

Maven.

Configuring Maven

Maven is a prerequisite for installing Fuse. If you don’t know what maven is please refer to

http://www.tutorialspoint.com/maven/

Maven is a built tool used for building Fuse artifacts. Fuse first searches in Maven local repository

for artifacts when we issue command to install artifact. So we must let Fuse know where Maven

is installed and the path of Maven’s local repository.

Edit $FUSE_INSTALLATION_DIR/etc/org.ops4j.paxurl.mvn.cfg

Update the following two properties:

 org.ops4j.pax.url.mvn.settings=$M2_HOME/conf /settings.xml

 org.ops4j.pax.url.mvn.localRepository=$local_repo

Note: Please change $local_repo with the actual path of your local repository mentioned in

Mavens settings.xml.

Run

After doing basic configuration changes, we can now start Fuse. All the binary files to work with

Fuse are located in $FUSE_INSTALLATION_DIR.

There are two ways to start Fuse:

 Using ./fuse

o This will allow you to see all the progress and logs on the same window in which

you started Fuse.

o It will give you Karaf console in the same terminal as shown below.

Note: This will start fuse in console mode which means Fuse process will also be stopped when

user logs out from session or closes Terminal which is not desirable in production or development

scenario. This script should be used only for debugging Fuse.

 Using ./start

o This won’t show any logs on screen not even the progress but this will start Fuse

in background and Fuse service won’t be stopped when user exits session or

closes terminal.

o In the real world Application, this type of behavior is desired. Fuse should be

running in the background even if we close the terminal.

http://www.tutorialspoint.com/maven/

Fuse

13

o If you want to connect to Fuse running in the background, you can use client

script which is located in the same folder.

o You should get the display as shown in the following screenshot.

o Exiting from client script won’t stop Fuse service. It will just close the Fuse

console.

HAWTIO

Fuse also provides complete GUI access to it using FMC (Fuse management console). You can

find GUI on below URL http://localhost:8181.

Everything we did by executing commands can also be done by accessing this browser-based

GUI. It becomes extremely helpful when we have more than one container and we are running

in a Fabric environment.

http://localhost:8181/

Fuse

14

In this chapter, we will discuss about Apache Karaf and why it is called as a lightweight OSGi

Container along with its benefits and other important features.

The JVM Problem

JVM or Java virtual Machine does not act as an actual virtual machine. A machine which will

allow you to stop, start or restart components running inside it on the fly. It may sometimes

allow hot deployments at class level but there is no way you could deploy or undeploy a

component of your application in your virtual machine without restarting it.

To solve this problem and allow modularity in Java application, Fuse uses an OSGi based runtime

known as Apache Karaf.

OSGi

The OSGi technology is a set of specifications that define a dynamic component system for java.

These specifications allow a development model where applications are (dynamically) composed

of many different (reusable) components.

Benefits of OSGi

 Reduced Complexity – Application is built as collaborating components which hide their

implementation details from each other resulting in reduced complexity.

 Reusability – Many components can leverage same component deployed in a container.

 Deployment – OSGi provides support for start, stop and update of components on the

fly with its lifecycle management APIs without container restart.

Bundles Vs Features

Following is the comparison between Bundles and Features.

Bundles

Bundles are equivalent to OSGi what jars are to JVM. Bundles are artifacts which are deployable

in an OSGi container. The bundles are components which work together or independently to

form an application.

These bundles can be installed, uninstalled, updated, started or stopped at runtime without

restarting the container.

Features

Features are a way of deploying multiple bundles together. Sometimes it makes more sense to

deploy bundles in group. Features allow us to deploy a group of bundles with just one command.

3. Apache Karaf

Fuse

15

Why another Container?

Apache Karaf is an OSGi based runtime, it is where our Application bundles run. Fuse uses

Apache Karaf as its runtime in which bundles run and collaborate to provide business

functionality.

Karaf is built on Felix and equinox which are OSGi Frameworks.

Karaf Architecture

Apache Karaf adds the following additional functionalities to basic OSGi runtime.

Hot Deployment

Karaf supports hot deployment. It contains a hot deploy directory. Anything that is placed in this

directory is automatically deployed and installed in Karaf as a bundle.

Logging

Karaf provides centralized logging by generating logs for all bundles in $Fuse_home/data/log.

We can edit logger configuration in org.ops4j.pax.logging.cfg in $Fuse_home/etc

directory.

Admin console

Karaf provides a sophisticated and lucid Admin console to interact with running instance of fuse.

It also provides a pre-installed set of commands which can be used to manage and monitor

components (Bundle) at runtime. This console is extensible so it allows us to add new commands

to the console by adding new bundles to console.

Fuse

16

SSH Access

Karaf allows remote access to this Admin console with SSH. Anyone with valid credentials can

connect to karaf admin console over SSH terminal.

Fuse

17

In this chapter, we will discuss what Apache Camel is and how it effectively routes data between

endpoints, along with a few examples.

What is Apache Camel?

Apache Camel is an open source integration framework which was started in early 2007.

It is an EIP (Enterprise Integration Pattern) based approach which provides several out of the

box patterns implementations that can be used to solve enterprise integration problems. EIP are

nothing but proven solutions to the well documented and recurring problems in enterprise

integration.

Camel is also known as routing and mediation engine as it effectively routes data between

endpoints, while taking heavy load like transformation of data formats, endpoint connectivity

and many more.

Basic Example

The prerequisites to use Apache Camel are:

 Java

 Maven

 Redhat JBoss Fuse 6.1-GA-379

Create basic skeleton of Application

mvn:archetype generate –DgroupId=com.tutorialpoint.app –DartifactId=camel-first-app –

DarchetypeGroupId=org.apache.camel.archetypes –DarchetypeArtifactId=camel-archetype-

spring –DinteractiveMode=false -X

4. Apache Camel

Fuse

18

This should generate the following directory structure.

This is a basic skeleton of our Camel application being generated.

Edit camel-context.xml

Edit camel-first-app  src  main  resources  META-INF\spring\camel-context.xml

to match as below

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <!-- here is a sample which processes the input files

 (leaving them in place - see the 'noop' flag)

 then performs content based routing on the message using XPath -->

 <route>

 <from uri="file:///d:/src/data?noop=false"/>

 <choice>

 <when>

 <xpath>/person/city = 'London'</xpath>

http://camel.apache.org/schema/spring

Fuse

19

<log message="UK message"/>

 <to uri="file:///d:/target/messages/uk"/>

 </when>

 <otherwise>

 <log message="Other message"/>

 <to uri="file:///d:/target/messages/others"/>

 </otherwise>

 </choice>

 </route>

 </camelContext>

</beans>

Edit pom.xml

Add the following code inside <plugins></plugins>

 <plugin>

 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>

 <version>2.3.4</version>

 <extensions>true</extensions>

 <configuration>

 <instructions>

 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>

 <Import-Package>*</Import-Package>

 </instructions>

 </configuration>

 </plugin>

Change packaging type from jar  bundle.

<packaging>bundle</packaging>

Build the project using the following command:

mvn clean install

Fuse

20

Install Project into Fuse

Start Fuse using Fuse.bat/start.bat. If you start Fuse using start.bat, use client.bat to

connect to Fuse. You should get the UI as shown in the following screenshot.

This is the CLI for accessing Karaf and Fuse commands.

install –s mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

Test if your Project is Running

Now your application should be installed in Fuse. Copy data directory inside camel-first-app

and place it in D:/src/ and it should copy message having city=London into

D:/target/merssages/uk.

Place the input file in D:/src/data

Input

Message1.xml

<?xml version="1.0" encoding="UTF-8"?>

<person user="james">

 <firstName>James</firstName>

 <lastName>Strachan</lastName>

 <city>London</city>

</person>

Fuse

21

Message2.xml

<?xml version="1.0" encoding="UTF-8"?>

<person user="hiram">

 <firstName>Hiram</firstName>

 <lastName>Chirino</lastName>

 <city>Tampa</city>

</person>

Output

In D:/target/messages/uk

<?xml version="1.0" encoding="UTF-8"?>

<person user="james">

 <firstName>James</firstName>

 <lastName>Strachan</lastName>

 <city>London</city>

</person>

In D:/target/messages/others

<?xml version="1.0" encoding="UTF-8"?>

<person user="hiram">

 <firstName>Hiram</firstName>

 <lastName>Chirino</lastName>

 <city>Tampa</city>

</person>

Fuse

22

In this chapter, we will understand the different Camel Concepts. Let us start by taking a basic

example to understand core concepts to begin with.

CamelContext

Every camel application will have at least one CamelContext. This is the place where we add

camel routes. It is similar to ApplicationContext of Spring.

Camel context can be thought as a container which keeps all things together. One camel context

can have multiple routes inside it.

Routes

CamelContext may contain one or more routes. Routes are the integration logic which defines

how data will flow in camel context from one endpoint to another.

Endpoint

Endpoint is end of channel through which system can send or receive messages. This is what we

call as destination or source in communication language.

Components

Components are point of extension in Camel. Components can be an interface to technology,

data format, transformers, etc. They may also act as a factory for endpoints.

5. Camel Concepts

Fuse

23

EIP

EIP stands for Enterprise Integration Pattern. These are identified and well-known solutions to a

recurring problem. Camel supports most of the Enterprise Integration Patterns.

Content Based Router

CBR patterns allow us to route data as per the content of the input file.

This pattern is used when we have to route values depending on the contents of the body of

input.

The following example will read data from D:/data/input directory. After reading, it will check

for value tag inside the data tag. If the value tag contains value1, it will be sent to D:/value1,

If it contains value2, it will be sent to D:/value2 and if none of these both, then it will be sent

to others.

<CamelContext xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="file:///D:/data/input"/>

 <choice>

 <when>

 <xpath>/data/value = 'value1'</xpath>

 <to uri="file:///D:/value1"/>

 </when>

 <when>

 <xpath>/data/value = 'value2'</xpath>

 <to uri="file:///D:/value2"/>

 </when>

 <otherwise>

 <to uri="file:///D:/others "/>

 </otherwise>

 </choice>

http://camel.apache.org/schema/spring%22

Fuse

24

</route>

</camelContext>

Input

D:/data/input/message1.xml

<data>

 <value>value1</value>

</data>

D:/data/input/message2.xml

<data>

 <value>value2</value>

</data>

Output

D:/value1/

<data>

 <value>value1</value>

</data>

D:/Value2/

<data>

 <value>value2</value>

</data>

Splitter

A splitter pattern is used to split input data into smaller chunks.

Fuse

25

This pattern is used most of the times with huge data input which requires to be split in chunks,

so it becomes process-able. It breaks down input into smaller fragments based on input token

string.

<CamelContext xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="file:///D:/inbox"/>

 <split streaming="true">

 <tokenize token="order" xml="true"/>

 <to uri="activemq:queue:order"/>

 </split>

 </route>

</CamelContext>

Input

D:/inbox/message.xml

<order>

 <data>

 <value>value1</value>

 </data>

</order>

<order>

 <data>

 <value>value2</value>

 </data>

</order>

<order>

 <data>

 <value>value3</value>

 </data>

</order>

http://camel.apache.org/schema/spring%22

Fuse

26

Output

If you check AMQ you will find 3 messages posted.

<order>

 <data>

 <value>value4</value>

 </data>

</order>

Recipient List

A recipient list pattern is used when a list of recipient needs to be retrieved from the message

body itself.

In the following example, a message will be sent to all the recipients who are listed in the

customer tag as comma separated list of strings.

<CamelContext xmlns="http://camel.apache.org/schema/spring">

<route>

 <from uri="jms:xmlOrders" />

 <recipientList>

 <xpath>/order/customer</xpath>

 </recipientList>

</route>

</camelContext>

http://camel.apache.org/schema/spring%22

Fuse

27

Other EIPs

Camel provides support to almost all the EIPs identified. Some of commonly used EIP are as

mentioned below.

 Log - To log complete message or part of it

 Message Filter - Filtering contents of messages

 Re-Sequencer – To get all tokens in sequence

 Wiretap - To inspect travelling messages

The complete list of EIP and their usage can be found at Camel’s official documentation

http://camel.apache.org/eip.html

Exception Handling in Camel

Using Error Handler – This is the easiest way to handle exceptions in camel.

To use this, we have to configure Error handler class bean and provide it as reference to

CamelContext errorHandlerRef attribute.

<bean id="loggingErrorHandler" class="org.apache.camel.builder.LoggingErrorHandler">

 <property name="logName" value="mylogger.name"/>

 <property name="level" value="DEBUG"/>

</bean>

 <camelContext errorHandlerRef=” loggingErrorHandler” >

…

</camelContext>

Using Try Catch Finally

Camel also supports Java style Try Catch Finally block for error handling.

Just like Java, it has the following three blocks:

 doTry block contains code that may generate exception.

 doCatch block contains code that needs to be executed in case of exception.

 doFinally block has code that must be executed irrespective of exception. It will always

be executed no matter if exception was raised or not.

Note: Mock is testing component and not recommended for other purposes. It is the component

in camel used for testing just like jMOck component in Test driven development.

<route>

 <from uri="direct:start"/>

 <doTry>

http://camel.apache.org/eip.html

Fuse

28

 <process ref="someProcesorThatmayFail"/>

 <to uri="mock:result"/>

 <doCatch>

 <exception>java.io.IOException</exception>

 <exception>java.lang.IllegalStateException</exception>

 <to uri="mock:catch"/>

 </doCatch>

 <doFinally>

 <to uri="mock:finally"/>

 </doFinally>

 </doTry>

</route>

In the above example, we can give a list of exceptions that need to be handled by the catch

block.

Deploying Bundle in Fuse

Start Fuse using Fuse.bat/start.bat.

If you start Fuse using start.bat, use client.bat to connect to Fuse. You should get the UI as

shown in the following screenshot.

Fuse

29

This is the CLI for accessing Karaf and Fuse commands.

install –s mvn:group.id /artifact.id/version

e.g. install –s mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

Fuse

30

In this chapter, let us discuss about what Apache CXF is and how it can be helpful in developing

SOAP and Rest Web Services.

What is Apache CXF?

Apache CXF is a web service development framework that can be utilized to develop SOAP and

Rest web services. CXF is fully compliant with JAX-RS and JAX-Ws standard.

It is most widely used web service development framework now. CXF has learned and improved

over Axis2 which is now gradually being replaced by CXF.

CXF vs Axis2

 CXF Axis2

Improvements

CXF is most used framework as of

now.

It has lot improvements over Axis2

Axis2 is gradually being

replaced by CXf.

It requires more code as

compared to CXF

Code required
CXF requires less code as compared

to Axis2

Axis2 requires more code

comparatively

Standard

Compliance

CSF is fully compliant with JAX-RS

and JAX-WS

Axis2 is not fully compliant with

JAX-RS and JAX-WS

Compatible with

Spring
Yes No

Separation of

front-ends

Clean separation of front-end from

JAX-WS code
No clean separation is provided

SOAP

SOAP stands for Simple Object Access Protocol. It is a protocol for exchanging structured

information over web services between two systems. It mostly relies on XML for structuring

data and uses HTTP or SMTP for message negotiation and transmission.

6. Apache CXF

Fuse

31

There are two approaches to develop SOAP web services:

o Code first – In this approach, WSDL is generated from code.

o Contract first – In contract first, code is generated from WSDL.

SOAP Development Using CXF

Configure Maven

Add the following profile to your settings.xml of Maven.

<profiles>

 <profile>

 <id>Jboss-Fuse</id>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>fusesource</id>

<url>http://repo.fusesource.com/nexus/content/groups/public/</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

 </repositories>

 </profile>

 </profiles>

Create Skeleton

mvn archetype:generate -DarchetypeGroupId=org.apache.servicemix.tooling -

DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle -

DarchetypeVersion=2012.01.0.redhat-60024 -DgroupId=org.fusesource.example -

DartifactId=cxf-basic -Dversion=1.0-SNAPSHOT

Fuse

32

Build Web Service Project

mvn clean install

Install web-service into Fuse using the following command

JBossFuse:karaf@root>install -s mvn:org.fusesource.example/cxf-basic/1.0-SNAPSH

Check if bundle has registered SOQP web-service

Open URL http://localhost:8181/cxf

The web-service should be listed as follows.

Testing Web-Service

mvn -Pclient

INFO: Creating Service {http://ws.totorials.com/}PersonService from class com.to

torials.ws.Person

Invoking getPerson...

getPerson._getPerson_personId=Guillaume

getPerson._getPerson_ssn=000-000-0000

getPerson._getPerson_name=Guillaume

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 30.668 s

[INFO] Finished at: 2016-02-15T21:01:20+05:30

[INFO] Final Memory: 10M/37M

[INFO] --

http://localhost:8181/cxf

Fuse

33

To begin with, REST stands for Representational State Transfer. It is a way of developing web

services based on state-less, cacheable, client-server protocol, which is HTTP in most cases.

REST web services use HTTP requests to post, get, delete data from network.

REST Development using CXF

Create a simple Maven quick-start project

mvn archetype:generate -DgroupId=com.tuts.abhinav -DartifactId=rest-service

-DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Add dependencies

<dependency>

 <groupId>org.apache.servicemix.specs</groupId>

 <artifactId>org.apache.servicemix.specs.jsr311-api-1.1.1</artifactId>

 <version>1.9.0</version>

 <scope>provided</scope>

</dependency>

<dependency>

 <groupId>org.apache.servicemix</groupId>

 <artifactId>servicemix-http</artifactId>

 <version>2013.01</version>

</dependency>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.16</version>

</dependency>

Add Build Instruction

<build>

 <defaultGoal>install</defaultGoal>

7. REST Web Services

Fuse

34

 <plugins>

 <plugin>

 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>

 <version>2.3.4</version>

 <extensions>true</extensions>

 <configuration>

 <instructions>

 <Bundle-SymbolicName>rest-example-database-

post-method</Bundle-SymbolicName>

 <Import-Package>* </Import-Package>

 </instructions>

 </configuration>

 </plugin>

 </plugins>

 </build>

Add Fuse Plugin Repositories

<pluginRepositories>

 <pluginRepository>

 <id>fusesource.m2</id>

 <name>FuseSource Community Release Repository</name>

 <url>http://repo.fusesource.com/nexus/content/repositories/releases</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </pluginRepository>

Add Repositories

<repositories>

 <repository>

Fuse

35

 <id>fusesource.m2</id>

 <name>FuseSource Community Release Repository</name>

 <url>http://repo.fusesource.com/nexus/content/repositories/releases</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

 <repository>

 <id>fusesource.ea</id>

 <name>FuseSource Community Early Access Release Repository</name>

 <url>http://repo.fusesource.com/nexus/content/groups/ea</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <releases>

 <enabled>true</enabled>

 </releases>

 </repository>

 </repositories>

Create Service Class

Create class UserService.java under com/tuts/

package com.tuts;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/UserService_1")

public class UserService

{

Fuse

36

 @GET

 @Path("/get_data")

 @Produces(MediaType.APPLICATION_JSON)

 public String getUser() {

 String reponse = "This is standard response from REST";

 return reponse;

 }

}

Create Blueprint.xml

Create blueprint.xml under/src/main/resources/OSGI-INF/blueprint blueprint.xml

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"

 xsi:schemaLocation="

 http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd

 http://cxf.apache.org/blueprint/jaxrs

http://cxf.apache.org/schemas/blueprint/jaxrs.xsd">

 <jaxrs:server id="service" address="/users">

 <jaxrs:serviceBeans>

 <ref component-id="userService" />

 </jaxrs:serviceBeans>

 </jaxrs:server>

 <bean id="userService" class="com.tuts.UserService" />

</blueprint>

Install Rest service in Fuse

install -s mvn:com.tuts.abhinav/rest-service/1.0-SNAPSHOT

Fuse

37

Check if Bundle has a Registered Web-Service

Open URL http://localhost:8181/cxf

Test Web Service

Open URL http://localhost:8181/cxf/users12/UserService_1/get_data

http://localhost:8181/cxf
http://localhost:8181/cxf/users12/UserService_1/get_data

Fuse

38

In this chapter, we will get to know about ActiveMQ and how it acts as a broker of messages to

allow applications to communicate with each other.

What is AMQ?

ActiveMQ is an open source message broker written in Java. It’s fully compliant with JMS 1.1

standards.

JMS is a specification that allows development of message based system. ActiveMQ acts as a

broker of messages which sits in between applications and allows them to communicate in

asynchronous and reliable way.

Types of Messaging

There are two types of messaging options explained below for better understanding.

Point to Point

In this type of communication, the broker sends messages to only one consumer, while the other

consumers will wait till they get the messages from the broker. No consumer will get the same

message.

If there are no consumers, the Broker will hold the messages till it gets a consumer. This type

of communication is also called as Queue based communication where the Producer sends

messages to a queue and only one consumer gets one message from the queue. If there is more

than one consumer, they may get the next message but they won’t get the same message as

the other consumer.

8. Apache AMQ

Fuse

39

Publish/Subscribe

In this type of communication, the Broker sends same copy of messages to all the active

consumers. This type of communication is also known as Topic based communication where

broker sends same message to all active consumer who has subscribed for particular Topic. This

model supports one-way communication where no verification of transmitted messages is

expected.

Creating Queue and Topics

Fuse comes bundled with ActiveMQ. We can access ActiveMQ using FMC console (the browser

based interface to work with AMQ).

Login to FMC using localhost:8181 and select ActiveMQ tab.

Fuse

40

 Click on +Create

 Enter Queue/Topic name

 Select Queue/Topic from radio button

 Click on Create Queue/Create topic

Now you should be able to see the TestQ created under root  Queue 

To check the topic created follow rootTopic.

Fuse

41

Browsing /Deleting Contents of the Queue

 Login to FMC using localhost:8181

 Select ActiveMQ tab

 Root  Queue  TestQ <select queue that you want to browse>  Browse

 To check contents of this message, click on that particular message.

 You can delete a particular message by clicking on the Delete button shown on the top

right corner

Fuse

42

In this chapter, we will learn the basics of how ActiveMQ works with Camel.

Configuring to ActiveMQ Component

Before we can use ActiveMQ queue or topic in our code we have to configure

ActiveMQComponent. Minimal configuration of ActiveMQComponent can be done as shown in the

following program –

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

 <property name="brokerURL" value="tcp://localhost:61616"/>

 <property name="userName" value="admin"/>

 <property name="password" value="admin"/>

 </bean>

 brokerURL- Specifies host and port for AMQ Broker.

 username - Specifies username to use for connecting to AMQ Broker.

 password - specifies password for connecting to AMQ Broker.

Connecting to Queue

Now that we have configured ActiveMQComponent, we can use it in our CamelContext as

endpoint.

We will use AMQ endpoint in the following format –

Activemq:[queue|topic]:[queueName|topicName]

Writing Messages to AMQ

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

9. AMQ with Camel

Fuse

43

After deploying this bundle in Fuse container, you should be able to see messages posted to

AMQ which were placed as files in D:/src/data.

Input

D:/src/data/input.txt

Test me

Output

Reading from AMQ

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <!-- here is a sample which processes the input files

 (leaving them in place - see the 'noop' flag)

 then performs content based routing on the message using XPath -->

 <route>

 <from uri="activemq:queue:TestQ"/>

 <to uri="file:///d:/src"/>

Fuse

44

 </route>

 </camelContext>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

 <property name="brokerURL" value="tcp://localhost:61616"/>

 <property name="userName" value="admin"/>

 <property name="password" value="admin"/>

 </bean>

</beans>

Input

After deploying this bundle, you should see a file being generated in D:/src and messages are

consumed. Also Consumer should be shown for that Queue.

Output

D:/src

Test me

Writing to Topic

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

Fuse

45

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <!-- here is a sample which processes the input files

 (leaving them in place - see the 'noop' flag)

 then performs content based routing on the message using XPath -->

 <route>

 <from uri="file:///d:/src"/>

 <to uri="activemq:topic:TestTopic” />

 </route>

 </camelContext>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

 <property name="brokerURL" value="tcp://localhost:61616"/>

 <property name="userName" value="admin"/>

 <property name="password" value="admin"/>

 </bean>

</beans>

Reading from Topic

<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

 http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <!-- here is a sample which processes the input files

 (leaving them in place - see the 'noop' flag)

 then performs content based routing on the message using XPath -->

 <route>

 <from uri="activemq:topic:TestTopic"/>

Fuse

46

 <to uri="file:///d:/src2"/>

 </route>

 </camelContext>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

 <property name="brokerURL" value="tcp://localhost:61616"/>

 <property name="userName" value="admin"/>

 <property name="password" value="admin"/>

 </bean>

</beans>

Input

D:/src/file1.xml

<order>

 <data>

 <value>value1</value>

 </data>

</order>

<order>

 <data>

 <value>value2</value>

 </data>

</order>

<order>

 <data>

 <value>value3</value>

 </data>

</order>

Output

D:/src/

<order>

 <data>

 <value>value1</value>

 </data>

Fuse

47

</order>

<order>

 <data>

 <value>value2</value>

 </data>

</order>

<order>

 <data>

 <value>value3</value>

 </data>

</order>

Fuse

48

What is Fabric?

Fabric provides management and orchestration capabilities for multiple Fuse instances. Fabric

allows us to control all Fuse instances connected to it from a single point. A normal Fuse container

can be converted to act as a Fabric. Fabric has fabric registry in it which serves as data store

that contains all information regarding containers, it manages.

Why Fabric?

Fabric has the following special abilities which makes it an ideal candidate for use in distributed

environments.

 Monitoring the state of all containers in the fabric.

 Starting and stopping remote containers.

 Provisions remote container to run a particular application.

 Upgrading applications and rolling out patches in the live system.

 Starting and provisioning with new containers quickly for example to cope with

increased load on the system.

10. Fabric

Fuse

49

Fabric Setup

Creating Fabric

Normal Fuse container can be converted to Fabric by using the following command

fabric: create --clean --zookeeper-password myZooPass

Connecting other container to Fabric:

fabric:join --zookeeper-password myZooPass <fabric_host>:2181 Cont1

Note: Please replace <fabric_host> with actual host name on which fabric is running.

When you login to the Fuse Management Console from your browser using localhost:8181, you

should be able to see two containers as shown in the following screenshot. The Fabric container

is indicated by a small cloud symbol in front of it.

Profiles

A Profile contains the following information –

 Bundles to be installed

 Features to be installed

 Configurations to be applied

A Profile provides a way in fabric environment to install same set of bundles, features and

configuration on multiple servers.

If the same profile is applied to multiple containers and we do changes to that profile from any

container similar changes will be deployed automatically to the remaining containers to which it

is applied.

localhost:8181

Fuse

50

Creating Profiles

 Login in to FMC localhost:8181

 Runtime  Manage

 In the left hand side under Profile menu click on +

Enter the name you want to give to the profile and click create.

After this, the profile should be created.

Applying Profile to Container

Runtime  Containers  root (select the container you want)

localhost:8181

Fuse

51

Click Add which will lead to a pop-up box. Search for the profile you want and then again click

Add.

Fuse

52

The profile should be shown in the list as shown in the following screenshot.

Deploying a Bundle

To deploy a bundle, use the following path:

Runtime  Containers  root (select the container you want)  First_profile (select profile)

Click the Bundles tab. Set the bundle path in the following format and then click +.

mvn:group.id/artifact.id/version

Fuse

53

For example: mvn:com.tutorialpoint.app/camel-firt-app/1.0-SNAPSHOT

A bundle will be added to the profile and will be deployed on all the containers to which the

profile is assigned.

Un-deploying a Bundle

To un-deploy a bundle, use the following path:

Runtime  Containers  root (select container you want)  First_profile (select profile)

Click the Bundles tab and search for the bundle that you want to delete and then click on X. The

Bundle will be deleted from all the containers to which the profile is applied.

Fuse

54

Fuse

55

A Child Container provides the easiest way to manage the increasing load. When the system is

experiencing sudden load in traffic and a single container is not able to cope up with the load,

we can easily create a set of child containers and distribute the load among them, rather than

creating a complete new container.

Creating a Child Container

Login to FMC using localhost:8181

Now, follow the path: Runtime  container  +Create (button on right hand side)

Enter details like child name, parent container Number of instances etc.

11. Child Container

localhost:8181

Fuse

56

Click Create And Start Container

Managing a Child Container

A Child container acts as a normal container only.

Stopping a Child Container

To stop a child container, follow the path: Runtime  Container  Child1

Click Stop to stop the Child Container.

Starting a Child Container

To start a child container, follow the path: Runtime  Container  Child1

Click Start to start the child container.

Fuse

57

Fuse

58

In this chapter, we will discuss a few known issues that you might encounter while working with

Fuse. We will also discuss how you can get over these issues.

Code Changes are not Reflected

Connect to Fuse instance using a client script. Search the bundle for which you are facing an

issue, using the following command.

JBossFuse:karaf@root> list|grep <Bundle Description>

For Example:

JBossFuse:karaf@root> list|grep Camel

[255] [Active] [] [] [60] Fabric8 :: Camel Component

(1.0.0.redhat-379)

[266] [Active] [] [Started] [60] A Camel Spring Route

(1.0.0.SNAPSHOT)

Note: Bundle ID for the bundle from output of above command and use below command.

JBossFuse:karaf@root>update <bundle id>

JBossFuse:karaf@root>update 266

Bundle not Being Downloaded

It may happen because of the following two reasons –

 Maven repository not specified

 Bundle not present in repository

Maven Repository not Specified

Maven is a built tool used for building Fuse artifacts. Fuse first searches in Maven local repository

for artifacts, when we issue command to install artifact. So we must let Fuse know where Maven

is installed and path of Mavens local repository.

Edit $FUSE_INSTALLATION_DIR/etc/org.ops4j.paxurl.mvn.cfg

Update the following two properties –

 org.ops4j.pax.url.mvn.settings=$M2_HOME/conf /settings.xml

 org.ops4j.pax.url.mvn.localRepository=$local_repo

Note: Please change $local_repo with actual path of your local repository mentioned in Mavens

settings.xml

12. Fuse – Issues and Solutions

Fuse

59

Bundle not Present in Repository

If Maven settings are in place but still if you face issues while downloading the bundle, make

sure bundles JAR is present at the correct location in Maven Repository.

For Example, if the following bundle is throwing errors while downloading –

mvn:com.tutorialpoint.app/camel-first-app/1.0-SNAPSHOT

We have to check in $M2_REPO/com/tutorialpoint/app/camel-first-app/1.0-SNAPSHOT if actual

JAR is present.

Note: $M2_REPO needs to be replaced with actual path of Maven repository we have Fuse

configured to use.

Not Able to Login into FMC (Browser based GUI)

Users not Created – If you are getting the following UI but not able to login with a message

saying “Failed to log in, Forbidden”.

Check whether you have added users in

 $FUSE_INSTALLATION_HOME/etc/users.properties

The correct format to add users is –

Username=Password,Role

HAWTIO Port is Different

If you are not even able to get the UI at localhost:8181 in the browser, check if you have

mentioned correct port in URL.

$FUSE_INSTALLATION_HOME/etc/org.ops4j.pax.web.cfg

Fuse

60

Edit the following property in the file to use port you want to access.

org.osgi.service.http.port=8181

AMQ Broker is not working

Make sure that the 61616 port is open and not being currently used by another port. If you want

to change the default 61616 port for the same, you can edit it in

$FUSE_INSTALLATION_HOME/etc/System.properties

activemq.port = 61616

